Stem Cell Treatment for Glaucoma

Stem Cell Treatments for Glaucoma are currently available at SIRM

GLAUCOMA

Stem cell treatment for glaucoma

Glaucoma is an eye disorder in which the optic nerve suffers damage, permanently damaging vision in the affected eye(s) and progressing to complete blindness if untreated. It is often, but not always, associated with increased pressure of the fluid in the eye (aqueous humour). The term 'ocular hypertension' is used for cases having constantly raised intraocular pressure (IOP) without any associated optic nerve damage. Conversely, the term 'normal' or 'low tension glaucoma' is suggested for the typical visual field defects when associated with a normal or low IOP.

The nerve damage involves loss of retinal ganglion cells in a characteristic pattern. There are many different subtypes of glaucoma, but they can all be considered a type of optic neuropathy. Raised intraocular pressure is a significant risk factor for developing glaucoma. One person may develop nerve damage at a relatively low pressure, while another person may have high eye pressure for years and yet never develop damage. Untreated glaucoma leads to permanent damage of the optic nerve and resultant visual field loss, which can progress to blindness.

Glaucoma can be divided roughly into two main categories

  • open angle: Open angle, chronic glaucoma tends to progress at a slower rate and patients may not notice they have lost vision until the disease has progressed significantly.
  • closed angle: Closed angle glaucoma can appear suddenly and is often painful; visual loss can progress quickly, but the discomfort often leads patients to seek medical attention before permanent damage occurs.

 

Stem Cell Treatment for Glaucoma and stem cell therapy.

Stem Cell treatment studies and stem cell protocols from the NIH database:

Related Articles CRISPR applications in ophthalmologic genome surgery. Curr Opin Ophthalmol. 2017 May;28(3):252-259 Authors: Cabral T, DiCarlo JE, Justus S, Sengillo JD, Xu Y, Tsang SH Abstract PURPOSE OF REVIEW: The present review seeks to summarize and discuss the application of clustered regularly interspaced short palindromic repeats (CRISPR)-associated systems (Cas) for genome editing, also called genome surgery, in the field of ophthalmology. RECENT FINDINGS: Precision medicine is an emerging approach for disease treatment and prevention that takes into account the variability of an individual's genetic sequence. Various groups have used CRISPR-Cas genome editing to make significant progress in mammalian preclinical models of eye disease, the basic science of eye development in zebrafish, the in vivo modification of ocular tissue, and the correction of stem cells with therapeutic applications. In addition, investigators have creatively used the targeted mutagenic potential of CRISPR-Cas systems to target pathogenic alleles in vitro. SUMMARY: Over the past year, CRISPR-Cas genome editing has been used to correct pathogenic mutations in vivo and in transplantable stem cells. Although off-target mutagenesis remains a concern, improvement in CRISPR-Cas technology and careful screening for undesired mutations will likely lead to clinical eye therapeutics employing CRISPR-Cas systems in the near future. PMID: 28141764 [PubMed - indexed for MEDLINE]
Read more...

Quick Contact Form