Stem Cell Treatment for Glaucoma

Stem Cell Treatments for Glaucoma are currently available at SIRM

GLAUCOMA

Stem cell treatment for glaucoma

Glaucoma is an eye disorder in which the optic nerve suffers damage, permanently damaging vision in the affected eye(s) and progressing to complete blindness if untreated. It is often, but not always, associated with increased pressure of the fluid in the eye (aqueous humour). The term 'ocular hypertension' is used for cases having constantly raised intraocular pressure (IOP) without any associated optic nerve damage. Conversely, the term 'normal' or 'low tension glaucoma' is suggested for the typical visual field defects when associated with a normal or low IOP.

The nerve damage involves loss of retinal ganglion cells in a characteristic pattern. There are many different subtypes of glaucoma, but they can all be considered a type of optic neuropathy. Raised intraocular pressure is a significant risk factor for developing glaucoma. One person may develop nerve damage at a relatively low pressure, while another person may have high eye pressure for years and yet never develop damage. Untreated glaucoma leads to permanent damage of the optic nerve and resultant visual field loss, which can progress to blindness.

Glaucoma can be divided roughly into two main categories

  • open angle: Open angle, chronic glaucoma tends to progress at a slower rate and patients may not notice they have lost vision until the disease has progressed significantly.
  • closed angle: Closed angle glaucoma can appear suddenly and is often painful; visual loss can progress quickly, but the discomfort often leads patients to seek medical attention before permanent damage occurs.

 

Stem Cell Treatment for Glaucoma and stem cell therapy.

Stem Cell treatment studies and stem cell protocols from the NIH database:

Related Articles Deferoxamine-induced electronegative ERG responses. Doc Ophthalmol. 2018 08;137(1):15-23 Authors: Jauregui R, Park KS, Bassuk AG, Mahajan VB, Tsang SH Abstract PURPOSE: To report a case of deferoxamine-induced retinopathy characterized by electroretinography (ERG), optical coherence tomography angiography (OCT-A), and other multimodal imaging. METHODS: This is an observational case report of one patient. Full-field ERG was performed. OCT-A, spectral-domain optical coherence tomography (SD-OCT), color fundus photography, and fundus autofluorescence were used to characterize the retinopathy induced by deferoxamine use. RESULTS: A 64-year-old man with a history of β-thalassemia intermedia presented with worsening visual acuity, nyctalopia, and electronegative ERG. OCT-A revealed atrophy of the choriocapillaris in areas of hypoautofluorescence, corresponding to regions of retinal atrophy. SD-OCT showed disruption of the ellipsoid zone, granular hyperreflective deposits within the retinal pigment epithelium, thinning of the retinal layers, and extensive choroidal sclerosis and atrophy of the retinal pigment epithelium. CONCLUSION: Deferoxamine-induced retinopathy can manifest with electronegative maximal ERG responses, and OCT-A can be used to detect deferoxamine toxicity. PMID: 29770904 [PubMed - indexed for MEDLINE]
Read more...
Related Articles Viral Delivery Systems for CRISPR. Viruses. 2019 01 04;11(1): Authors: Xu CL, Ruan MZC, Mahajan VB, Tsang SH Abstract The frontiers of precision medicine have been revolutionized by the development of Clustered Regularly-Interspaced Short Palindromic Repeats (CRISPR)/Cas9 as an editing tool. CRISPR/Cas9 has been used to develop animal models, understand disease mechanisms, and validate treatment targets. In addition, it is regarded as an effective tool for genome surgery when combined with viral delivery vectors. In this article, we will explore the various viral mechanisms for delivering CRISPR/Cas9 into tissues and cells, as well as the benefits and drawbacks of each method. We will also review the history and recent development of CRISPR and viral vectors and discuss their applications as a powerful tool in furthering our exploration of disease mechanisms and therapies. PMID: 30621179 [PubMed - indexed for MEDLINE]
Read more...

Quick Contact Form