Stem Cell Treatment for Glaucoma

Stem Cell Treatments for Glaucoma are currently available at SIRM


Stem cell treatment for glaucoma

Glaucoma is an eye disorder in which the optic nerve suffers damage, permanently damaging vision in the affected eye(s) and progressing to complete blindness if untreated. It is often, but not always, associated with increased pressure of the fluid in the eye (aqueous humour). The term 'ocular hypertension' is used for cases having constantly raised intraocular pressure (IOP) without any associated optic nerve damage. Conversely, the term 'normal' or 'low tension glaucoma' is suggested for the typical visual field defects when associated with a normal or low IOP.

The nerve damage involves loss of retinal ganglion cells in a characteristic pattern. There are many different subtypes of glaucoma, but they can all be considered a type of optic neuropathy. Raised intraocular pressure is a significant risk factor for developing glaucoma. One person may develop nerve damage at a relatively low pressure, while another person may have high eye pressure for years and yet never develop damage. Untreated glaucoma leads to permanent damage of the optic nerve and resultant visual field loss, which can progress to blindness.

Glaucoma can be divided roughly into two main categories

  • open angle: Open angle, chronic glaucoma tends to progress at a slower rate and patients may not notice they have lost vision until the disease has progressed significantly.
  • closed angle: Closed angle glaucoma can appear suddenly and is often painful; visual loss can progress quickly, but the discomfort often leads patients to seek medical attention before permanent damage occurs.


Stem Cell Treatment for Glaucoma and stem cell therapy.

Stem Cell treatment studies and stem cell protocols from the NIH database:

Related Articles Glaucoma: Biological Trabecular and Neuroretinal Pathology with Perspectives of Therapy Innovation and Preventive Diagnosis. Front Neurosci. 2017;11:494 Authors: Nuzzi R, Tridico F Abstract Glaucoma is a common degenerative disease affecting retinal ganglion cells (RGC) and optic nerve axons, with progressive and chronic course. It is one of the most important reasons of social blindness in industrialized countries. Glaucoma can lead to the development of irreversible visual field loss, if not treated. Diagnosis may be difficult due to lack of symptoms in early stages of disease. In many cases, when patients arrive at clinical evaluation, a severe neuronal damage may have already occurred. In recent years, newer perspective in glaucoma treatment have emerged. The current research is focusing on finding newer drugs and associations or better delivery systems in order to improve the pharmacological treatment and patient compliance. Moreover, the application of various stem cell types with restorative and neuroprotective intent may be found appealing (intravitreal autologous cellular therapy). Advances are made also in terms of parasurgical treatment, characterized by various laser types and techniques. Moreover, recent research has led to the development of central and peripheral retinal rehabilitation (featuring residing cells reactivation and replacement of defective elements), as well as innovations in diagnosis through more specific and refined methods and inexpensive tests. PMID: 28928631 [PubMed]
Related Articles Elongation of Axon Extension for Human iPSC-Derived Retinal Ganglion Cells by a Nano-Imprinted Scaffold. Int J Mol Sci. 2017 Sep 20;18(9): Authors: Yang TC, Chuang JH, Buddhakosai W, Wu WJ, Lee CJ, Chen WS, Yang YP, Li MC, Peng CH, Chen SJ Abstract Optic neuropathies, such as glaucoma and Leber's hereditary optic neuropathy (LHON) lead to retinal ganglion cell (RGC) loss and therefore motivate the application of transplantation technique into disease therapy. However, it is a challenge to direct the transplanted optic nerve axons to the correct location of the retina. The use of appropriate scaffold can promote the proper axon growth. Recently, biocompatible materials have been integrated into the medical field, such as tissue engineering and reconstruction of damaged tissues or organs. We, herein, utilized nano-imprinting to create a scaffold mimicking the in vitro tissue microarchitecture, and guiding the axonal growth and orientation of the RGCs. We observed that the robust, long, and organized axons of human induced pluripotent stem cell (iPSC)-derived RGCs projected axially along the scaffold grooves. The RGCs grown on the scaffold expressed the specific neuronal biomarkers indicating their proper functionality. Thus, based on our in vitro culture system, this device can be useful for the neurophysiological analysis and transplantation for ophthalmic neuropathy treatment. PMID: 28930148 [PubMed - in process]

Quick Contact Form