Stem Cell Treatment for Erectile Dysfunction

Stem Cell Treatment for Erectile Dysfunction

STEM CELL TREATMENT ERECTILE DYSFUNCTION

Stem Cell Treatment for Erectile Dysfunction

  • Erectile Dysfunction is a sexual dysfunction characterized by the inability to develop or maintain an erection of the penis during sexual performance.

  • Stem Cell Treatmentst aims to effect the Calcium-sensitive potassium channel and therefore help increase the flow of blood into the Corpus.

STEM CELL TREATMENT ERECTILE DYSFUNCTIONA penile erection is the hydraulic effect of blood entering and being retained in sponge-like bodies within the penis. The process is often initiated as a result of sexual arousal, when signals are transmitted from the brain to nerves in the penis. Erectile dysfunction is indicated when an erection is difficult to produce. There are various circulatory causes, including alteration of the voltage-gated potassium channel, as in arsenic poisoning from drinking water.

The most important organic causes are cardiovascular disease and diabetes, neurological problems (for example, trauma from prostatectomy surgery), hormonal insufficiencies (hypogonadism) and drug side effects.

Psychological impotence is where erection or penetration fails due to thoughts or feelings (psychological reasons) rather than physical impossibility; this is somewhat less frequent but often can be helped. Notably in psychological impotence, there is a strong response to placebo treatment. Erectile dysfunction, tied closely as it is about ideas of physical well being, can have severe psychological consequences.

Stem Cell Treatment for Erectile Dysfunction

NIH Streaming Database:

Related Articles Study design: in vitro and in vivo assessment of bone morphogenic protein 2 combined with platelet-rich plasma on treatment of disc degeneration. Int Orthop. 2015 Jul 14; Authors: Hou Y, Shi G, Shi J, Xu G, Guo Y, Xu P Abstract OBJECTIVE: Our aim was to investigate the biological effects of bone morphogenic protein 2 (BMP2) on the differentiation of bone marrow mesenchymal stem cells (BMSCs) into chondrocyte-like cells in platelet-rich plasma (PRP) gel in vitro. In addition, the effectiveness of BMP2-transduced BMSCs in combined with PRP gel to repair the degenerated intervertebral disc in a rabbit model was also evaluated. Previous studies have shown that tissue engineering provides many promising advantages to treating disc degeneration and may reverse the pathological process of disc degeneration. METHODS: The expressions of types I, II and X collagen, aggrecan and Sox9 of the BMP2-transduced BMSCs in monolayer or PRP gel were examined by reverse transcriptase polymerase chain reaction (RT-PCR). Sixty New Zealand white rabbits were divided into five groups: 12 normal controls; 12 puncture operated with only disc degeneration being induced; 12 PRP transplantation animals; 12 BMSC and PRP-transplantation animals; 12 BMP2-transduced BMSCs and PRP-transplantation animals. The effect of BMP2-transduced BMSCs on degenerated discs were evaluated by magnetic resonance image (MRI) scan, histology, immunohistochemistry and Western blot analysis. RESULTS: BMP2 could facilitate chondrogenic differentiation of BMSCs in monolayer or PRP gel. The discs treated with BMP2-transduced BMSCs exhibited relatively well-preserved nucleus pulposus (NP) structure. Significantly higher T2-weighted signal intensity and a greater amount of extracellular matrix were observed in the BMP2-transduced BMSC group compared with other groups. In addition, the presences of BMP2-transduced BMSCs were identified at week 12 postoperatively in vivo. CONCLUSIONS: BMP2-transduced BMSCs can maintain the chondrocyte-like phenotype in PRP gel in vitro, and the combined use of these two agents can significantly promote repair of the degenerated discs in vivo. PMID: 26169838 [PubMed - as supplied by publisher]
Read more...

Quick Contact Form