Stem Cell Treatment for Erectile Dysfunction

Stem Cell Treatment for Erectile Dysfunction

STEM CELL TREATMENT ERECTILE DYSFUNCTION

Stem Cell Treatment for Erectile Dysfunction

  • Erectile Dysfunction is a sexual dysfunction characterized by the inability to develop or maintain an erection of the penis during sexual performance.

  • Stem Cell Treatmentst aims to effect the Calcium-sensitive potassium channel and therefore help increase the flow of blood into the Corpus.

STEM CELL TREATMENT ERECTILE DYSFUNCTIONA penile erection is the hydraulic effect of blood entering and being retained in sponge-like bodies within the penis. The process is often initiated as a result of sexual arousal, when signals are transmitted from the brain to nerves in the penis. Erectile dysfunction is indicated when an erection is difficult to produce. There are various circulatory causes, including alteration of the voltage-gated potassium channel, as in arsenic poisoning from drinking water.

The most important organic causes are cardiovascular disease and diabetes, neurological problems (for example, trauma from prostatectomy surgery), hormonal insufficiencies (hypogonadism) and drug side effects.

Psychological impotence is where erection or penetration fails due to thoughts or feelings (psychological reasons) rather than physical impossibility; this is somewhat less frequent but often can be helped. Notably in psychological impotence, there is a strong response to placebo treatment. Erectile dysfunction, tied closely as it is about ideas of physical well being, can have severe psychological consequences.

Stem Cell Treatment for Erectile Dysfunction

NIH Streaming Database:

Related Articles Human induced pluripotent stem cells generated from intervertebral disc cells improve neurologic functions in spinal cord injury. Stem Cell Res Ther. 2015 Jun 24;6(1):125 Authors: Oh J, Lee KI, Kim HT, You Y, Yoon DH, Song KY, Cheong E, Ha Y, Hwang DY Abstract INTRODUCTION: Induced pluripotent stem cells (iPSCs) have emerged as a promising cell source for immune-compatible cell therapy. Although a variety of somatic cells have been tried for iPSC generation, it is still of great interest to test new cell types, especially those which are hardly obtainable in normal situation. METHODS: In this study, we generated iPSCs using the cells originated from intervertebral disc which were removed during spinal operation after spinal cord injury. We investigated the pluripotency of disc cell-derived iPSCs (diPSCs) and neural differentiation capability as well as therapeutic effect in spinal cord injury. RESULTS: The disc cell-derived iPSCs (diPSCs) displayed similar characteristics to human embryonic stem cells, and were efficiently differentiated into neural precursor cells (NPCs) with the capability of differentiation into mature neurons in vitro. When the diPSC-derived NPCs were transplanted into mice 9 days after spinal cord injury, we detected a significant amelioration of hindlimb dysfunction during follow-up recovery periods. Histological analysis at 5 weeks post-transplantation identified undifferentiated human NPCs (Nestin(+)) as well as early (Tuj1(+)) and mature (MAP2(+)) neurons derived from the transplanted NPCs. Furthermore, NPC transplantation demonstrated a preventive effect on spinal cord degeneration resulting from the secondary injury. CONCLUSION: This study revealed that intervertebral discs removed during surgery for spinal stabilization after spinal cord injury, previously considered a "waste" tissue, may provide a unique opportunity to study iPSCs derived from difficult-to-access somatic cells and a useful therapeutic resource for autologous cell replacement therapy in spinal cord injury. PMID: 26104416 [PubMed - as supplied by publisher]
Read more...

Quick Contact Form