Stem Cell Treatment for Erectile Dysfunction

Stem Cell Treatment for Erectile Dysfunction

STEM CELL TREATMENT ERECTILE DYSFUNCTION

Stem Cell Treatment for Erectile Dysfunction

  • Erectile Dysfunction is a sexual dysfunction characterized by the inability to develop or maintain an erection of the penis during sexual performance.

  • Stem Cell Treatmentst aims to effect the Calcium-sensitive potassium channel and therefore help increase the flow of blood into the Corpus.

STEM CELL TREATMENT ERECTILE DYSFUNCTIONA penile erection is the hydraulic effect of blood entering and being retained in sponge-like bodies within the penis. The process is often initiated as a result of sexual arousal, when signals are transmitted from the brain to nerves in the penis. Erectile dysfunction is indicated when an erection is difficult to produce. There are various circulatory causes, including alteration of the voltage-gated potassium channel, as in arsenic poisoning from drinking water.

The most important organic causes are cardiovascular disease and diabetes, neurological problems (for example, trauma from prostatectomy surgery), hormonal insufficiencies (hypogonadism) and drug side effects.

Psychological impotence is where erection or penetration fails due to thoughts or feelings (psychological reasons) rather than physical impossibility; this is somewhat less frequent but often can be helped. Notably in psychological impotence, there is a strong response to placebo treatment. Erectile dysfunction, tied closely as it is about ideas of physical well being, can have severe psychological consequences.

Stem Cell Treatment for Erectile Dysfunction

NIH Streaming Database:

Timing of mesenchymal stem cell delivery impacts the fate and therapeutic potential in intervertebral disc repair. J Orthop Res. 2016 Jun 23; Authors: Maidhof R, Rafiuddin A, Chowdhury F, Jacobsen T, Chahine NO Abstract Cell-based therapies offer a promising approach to treat intervertebral disc (IVD) degeneration. The impact of the injury microenvironment on treatment efficacy has not been established. This study used a rat disc stab injury model with administration of mesenchymal stromal cells (MSCs) at 3, 14, or 30 days post injury (dpi) to evaluate the impact of interventional timing on IVD biochemistry and biomechanics. We also evaluated cellular localization within the disc with near infrared imaging to track the time and spatial profile of cellular migration after in vivo delivery. Results showed that upon injection into a healthy disc, MSCs began to gradually migrate outwards over the course of 14 days, as indicated by decreased signal intensity from the disc space and increased signal within the adjacent vertebrae. Cells administered 14 or 30 dpi also tended to migrate out 14 days after injection but cells injected 3dpi were retained at a significantly higher amount versus the other groups (p < 0.05). Correspondingly the 3dpi group, but not 14 or 30dpi groups, had a higher GAG content in the MSC group (p = 0.06). Enrichment of MSCs and increased GAG content in 3dpi group did not lead to increased compressive biomechanical properties. Findings suggest that cell therapies administered at an early stage of injury/disease progression may have greater chances of mitigating matrix loss, possibly through promotion of MSC activity by the inflammatory microenvironment associated with injury. Future studies will evaluate the mode and driving factors that regulate cellular migration out of the disc. This article is protected by copyright. All rights reserved. PMID: 27334230 [PubMed - as supplied by publisher]
Read more...

Quick Contact Form