Stem Cell Treatment for Epilepsy

Related Articles GluR3B Ab's induced oligodendrocyte precursor cells excitotoxicity via mitochondrial dysfunction. Brain Res Bull. 2017 Apr;130:60-66 Authors: Liu Y, Chen Y, Du WT, Wu XX, Dong FX, Qu XB, Fan HB, Yao RQ Abstract Studies have indicated that glutamate receptor subunit 3 peptide B antibodies (GluR3B Ab's) by directing against a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid subtype glutamate receptors (AMPARs) subunit 3 (GluR3B) was involved in the hippocampal neuron damage in the pathogenesis of epilepsy. Glutamate accumulation is critical for oligodendrocyte precursors (OPCs) excitotoxic injury. However, remarkably little is known about whether GluR3B Ab's causes OPCs excitotoxicity, and the underlying mechanisms remain unclear. In this study, we found that the survival rate of OPCs decreased, apoptosis increased and the release of LDH increased with GluR3B Ab's treatment. GluR3B Ab's enhanced the level of intracellular Ca2+ and reactive oxygen species (ROS), caused mitochondrial potential collapse measured by JC-1 and promoted mitochondrial cytochrome C release. AMPARs antagonist NBQX reversed OPCs apoptosis caused by GluR3B Ab's. Taken together, these data suggests that AMPAR was involved in GluR3B Ab's-induced OPCs toxicity by mitochondrial dysfunction. The study revealed a new mechanism for OPCs excitotoxicity in many central nervous system diseases such as epilepsy. PMID: 28063880 [PubMed - indexed for MEDLINE]
Read more...
New prospects of mesenchymal stem cells for ameliorating temporal lobe epilepsy. Inflammopharmacology. 2018 Feb 22;: Authors: Salem NA, El-Shamarka M, Khadrawy Y, El-Shebiney S Abstract Temporal lobe epilepsy (TLE) is present in 30% of epileptic patients and does not respond to conventional treatments. Bone marrow derived mesenchymal stem cells (BMSCs) induce endogenous neural stem cells, inhibit neurodegeneration, and promote brain self-repair mechanisms. The present study addresses the feasibility of BMSCs transplantation against pilocarpine-induced TLE experimentally. BMSCs were injected either intravenously (IV) or in hippocampus bilaterally (IC). Increased cell count of BMSCs was achieved via IC route. BMSCs treatment ameliorated the pilocarpine-induced neurochemical and histological changes, retained amino acid neurotransmitters to the normal level, downregulated the immunoreactivity to insulin growth factor-1 receptor, synaptophysin, and caspase-3 and reduced oxidative insult and inflammatory markers detected in epileptic model. It is worth noting that BMSCs IC-administered showed more pronounced effects than those administered via IV route. BMSCs transplantation presents a promise for TLE treatment that has to be elucidated clinically. PMID: 29470694 [PubMed - as supplied by publisher]
Read more...

Quick Contact Form