Stem Cell Treatment Diabetes

Stem Cell Treatment for Diabetes is an Option

STEM CELL TREATMENT DIABETESDiabetes mellitus, often simply referred to as diabetes, is a group of metabolic diseases in which a person has high blood sugar, either because the body does not produce enough insulin, or because cells do not respond to the insulin that is produced. This high blood sugar produces the classical symptoms of polyuria (frequent urination), polydipsia (increased thirst) and polyphagia (increased hunger).

There are three main types of diabetes:

  • Type 1 diabetes: results from the body's failure to produce insulin, and presently requires the person to inject insulin. (Also referred to as insulin-dependent diabetes mellitus, IDDM for short, and juvenile diabetes.)
  • Type 2 diabetes: results from insulin resistance, a condition in which cells fail to use insulin properly, sometimes combined with an absolute insulin deficiency. (Formerly referred to as non-insulin-dependent diabetes mellitus, NIDDM for short, and adult-onset diabetes.)
  • Gestational diabetes: is when pregnant women, who have never had diabetes before, have a high blood glucose level during pregnancy. It may precede development of type 2 DM.
STEM CELL TREATMENT DIABETES

Stem Cell Treatment and Diabetes

Streaming NIH Database:

Related Articles Vector-free in vivo trans-determination of adult hepatic stem cells to insulin-producing cells. Mol Biol Rep. 2019 May 17;: Authors: Sarkar S, Munshi C, Chatterjee S, Mukherjee S, Bhattacharya S Abstract A reduction in the number of functional β-cells is the central pathological event in diabetes. Liver and ventral pancreas differentiates simultaneously in the same general domain of cells within embryonic endoderm. In addition, the precursor cell population being bi-potential may be targeted for either pancreas or liver development. Hepatic stem cells were redirected in vivo to functional insulin producing cells in a acetylaminofluorene-partial hepatectomy (AAF/PH) adult male rat model with/without GLP-1 treatment. In routine H&E histology and immunohistochemistry, stem cells resembled β cells in GLP-1 injected rats. Immunoblots revealed involvement of adenylate cyclase, TLR4 and PDX1 in insulin synthesis. Expression of genes (GLP-1R, MAFA, PDX1, INS1 and INS2) augmented in the GLP-1 treated regenerated liver. Results strongly indicated the key role of GLP-1 in the induction of insulin secretion in trans-determined reprogrammed cell in vivo. The present method being vector free poses no risk of vector spillover in the host and holds promise. PMID: 31102150 [PubMed - as supplied by publisher]
Read more...

Quick Contact Form