Stem Cell Treatment for Degenerative Disc Disease

Stem Cell Treatment for Degenerative Disc Disease

Degeneration of the intervertebral disc, often called "degenerative disc disease" (DDD) of the spine, is a condition that can be painful and can greatly affect the quality of one's life.

STEM CELL TREATMENT DEGENERATIVE DISC DISEASE

While disc degeneration is a normal part of aging and for most people is not a problem, for certain individuals a degenerated disc can cause severe constant chronic pain. Often, degenerative disc disease can be successfully treated without surgery. One or a combination of treatments such as physical therapy, chiropractic manipulative therapy (CMT) and other chiropractic treatments, osteopathic manipulation, anti-inflammatory medications such as nonsteroidal anti-inflammatory drugs, traction, or spinal injections often provide adequate relief of these troubling symptoms.

Degenerative discs typically show degenerative fibrocartilage and clusters of chondrocytes, suggestive of repair. Inflammation may or may not be present. Histologic examination of disc fragments resected for presumed DDD is routine to exclude malignancy.

Fibrocartilage replaces the gelatinous mucoid material of the nucleus pulposus as the disc changes with age. There may be splits in the annulus fibrosis, permitting herniation of elements of nucleus pulposus. There may also be shrinkage of the nucleus pulposus that produces prolapse of the annulus with secondary osteophyte formation at the margins of the adjacent vertebral body.

The pathologic findings in DDD include protrusion, spondylolysis, and/or subluxation of vertebrae (sponylolisthesis) and spinal stenosis.

STEM CELL TREATMENT FOR DEGENERATIVE DISC DISEASE

Stem Cell Treatment and Degenerative Disc Disease NIH Streaming Database

Related Articles Development of a KLD-12 polypeptide/TGF-β1-tissue scaffold promoting the differentiation of mesenchymal stem cell into nucleus pulposus-like cells for treatment of intervertebral disc degeneration. Int J Clin Exp Pathol. 2015;8(2):1093-103 Authors: Bian Z, Sun J Abstract OBJECTIVE: To develop tissue engineering scaffolds consisting of self-assembling KLD-12 polypeptide/TGF-β1 nanofiber gel, for the induction of mesenchymal stem cell (MSCs) differentiation into nucleus pulposus (NP)-like cells. METHODS: The release of TGF-β1 from KLD-12 polypeptide gels containing varying TGF-β1 concentrations was detected by ELISA. MSCs were isolated with a density gradient method and their differentiation into NP-like cells was analyzed in KLD-12 polypeptide/TGF-β1- or KLD-12 polypeptide control nanofiber-gel 3D-cultures. The Alcianblue method, Real-time quantitative PCR (RT-qPCR), and immunocytochemistry were used to measure the expression of extracellular matrix (ECM) molecules, such as aggrecan, glycosaminoglycans (GAGs), and type II collagen. RESULTS: ELISA results documented favorable time-dependent release characteristics of TGF-β1 in the KLD-12 polypeptide/TGF-β1 gel scaffolds. The results of CCK-8 cell proliferation assay showed the TGF-β1 containing scaffolds induced higher growth rate in MSCs compared to the control group. Calcein-AM/PI fluorescent staining showed: the cells in the gel grew well, maintaining the circular shape of cells, and the spindle and fusiform shape of cells on the gel edges. The cell viability displayed a survival rate of 89.14% ± 2.468 for the TGF-β1 group with no significant difference between the two groups at 14 d of culture. The production of ECM was monitored showing higher expression of GAGs in the TGF-β1 group (P < 0.01) with highest amounts at 10 d and 14 d compared to 4 d and 7 d (P < 0.05). Real-time PCR results revealed that the expression levels of collagen II and aggrecan mRNA were higher in the TGF-β1 group (P < 0.05). Finally, immunocytochemical staining of collagen II confirmed the higher expression levels. CONCLUSION: A scaffold containing a KLD-12 polypeptide/TGF-β1-nanofiber gel and MSCs differentiated into NP-like cells is able to produce ECM and has the potential to serve as a three-dimensional (3-D) support scaffold for the filling of early postoperative residual cavities and the treatment of intervertebral disc degeneration. PMID: 25972996 [PubMed - in process]
Read more...

Quick Contact Form