Stem Cell Treatment for Degenerative Disc Disease

Stem Cell Treatment for Degenerative Disc Disease

Degeneration of the intervertebral disc, often called "degenerative disc disease" (DDD) of the spine, is a condition that can be painful and can greatly affect the quality of one's life.


While disc degeneration is a normal part of aging and for most people is not a problem, for certain individuals a degenerated disc can cause severe constant chronic pain. Often, degenerative disc disease can be successfully treated without surgery. One or a combination of treatments such as physical therapy, chiropractic manipulative therapy (CMT) and other chiropractic treatments, osteopathic manipulation, anti-inflammatory medications such as nonsteroidal anti-inflammatory drugs, traction, or spinal injections often provide adequate relief of these troubling symptoms.

Degenerative discs typically show degenerative fibrocartilage and clusters of chondrocytes, suggestive of repair. Inflammation may or may not be present. Histologic examination of disc fragments resected for presumed DDD is routine to exclude malignancy.

Fibrocartilage replaces the gelatinous mucoid material of the nucleus pulposus as the disc changes with age. There may be splits in the annulus fibrosis, permitting herniation of elements of nucleus pulposus. There may also be shrinkage of the nucleus pulposus that produces prolapse of the annulus with secondary osteophyte formation at the margins of the adjacent vertebral body.

The pathologic findings in DDD include protrusion, spondylolysis, and/or subluxation of vertebrae (sponylolisthesis) and spinal stenosis.


Stem Cell Treatment and Degenerative Disc Disease NIH Streaming Database

Related Articles FoxA2 regulates the type II collagen-induced nucleus pulposus-like differentiation of adipose-derived stem cells by activation of the Shh signaling pathway. FASEB J. 2018 Jun 11;:fj201800373R Authors: Zhou X, Ma C, Hu B, Tao Y, Wang J, Huang X, Zhao T, Han B, Li H, Liang C, Chen Q, Li F Abstract Adipose tissue-derived stem cell (ADSC)-based therapy is promising for the treatment of intervertebral disc (IVD) degeneration, but the difficulty in inducing nucleus pulposus (NP)-like differentiation limits its clinical applications. Forkhead box (Fox)-A2 is an essential transcription factor for the formation of a normal NP. We demonstrated that type II collagen stimulates NP-like differentiation of ADSCs, partly by increasing the expression of FoxA2. We constructed FoxA2-overexpressing and -knockdown ADSCs by using lentiviral vectors. FoxA2 overexpression significantly enhanced NP-specific gene expression and the synthesis of glycosaminoglycan and collagen, whereas FoxA2 knockdown decreased NP-like differentiation and the expression of aggrecan and collagen II. The enhanced NP-like differentiation related to FoxA2 overexpression was partially rescued by an Shh signaling pathway inhibitor. In addition, FoxA2 inhibited the expression of Itg-α2 and further promoted NP-like differentiation induced by type II collagen. Furthermore, FoxA2-overexpressing ADSCs combined with type II collagen hydrogels promoted regeneration of degenerated NP in vivo. Our findings suggest that FoxA2 plays an essential role in the NP-like differentiation of ADSCs by activating the Shh signaling pathway.-Zhou, X., Ma, C., Hu, B., Tao, Y., Wang, J., Huang, X., Zhao, T., Han, B., Li, H., Liang, C., Chen, Q., Li, F. FoxA2 regulates the type II collagen-induced nucleus pulposus-like differentiation of adipose-derived stem cells by activation of the Shh signaling pathway. PMID: 29890089 [PubMed - as supplied by publisher]

Quick Contact Form