Stem Cell Treatment for Degenerative Disc Disease

Stem Cell Treatment for Degenerative Disc Disease

Degeneration of the intervertebral disc, often called "degenerative disc disease" (DDD) of the spine, is a condition that can be painful and can greatly affect the quality of one's life.


While disc degeneration is a normal part of aging and for most people is not a problem, for certain individuals a degenerated disc can cause severe constant chronic pain. Often, degenerative disc disease can be successfully treated without surgery. One or a combination of treatments such as physical therapy, chiropractic manipulative therapy (CMT) and other chiropractic treatments, osteopathic manipulation, anti-inflammatory medications such as nonsteroidal anti-inflammatory drugs, traction, or spinal injections often provide adequate relief of these troubling symptoms.

Degenerative discs typically show degenerative fibrocartilage and clusters of chondrocytes, suggestive of repair. Inflammation may or may not be present. Histologic examination of disc fragments resected for presumed DDD is routine to exclude malignancy.

Fibrocartilage replaces the gelatinous mucoid material of the nucleus pulposus as the disc changes with age. There may be splits in the annulus fibrosis, permitting herniation of elements of nucleus pulposus. There may also be shrinkage of the nucleus pulposus that produces prolapse of the annulus with secondary osteophyte formation at the margins of the adjacent vertebral body.

The pathologic findings in DDD include protrusion, spondylolysis, and/or subluxation of vertebrae (sponylolisthesis) and spinal stenosis.


Stem Cell Treatment and Degenerative Disc Disease NIH Streaming Database

Naringin alleviates H2O2-induced apoptosis via the PI3K/Akt pathway in rat nucleus pulposus-derived mesenchymal stem cells. Connect Tissue Res. 2019 Jul 11;:1-14 Authors: Nan LP, Wang F, Ran D, Zhou SF, Liu Y, Zhang Z, Huang ZN, Wang ZY, Wang JC, Feng XM, Zhang L Abstract Purpose: To investigate the protective effect of naringin (Nar) on H2O2-induced apoptosis of nucleus pulposus-derived mesenchymal stem cells (NPMSC) and the potential mechanism in this process. Methods: Rat NPMSC were cultured in MSC culture medium or culture medium with different concentrations of H2O2. Nar or the combination of Nar and LY294002 was added into the culture medium to investigate the effects of Nar. Cell viability was evaluated by cell counting kit-8 (CCK-8) assay. The apoptosis rate was determined using Annexin V/PI dual staining and terminal deoxynucleotide transferase-mediated dUTP nick end labeling (TUNEL) assays. Additionally, the levels of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were analyzed by flow cytometry. ATP level in NPMSC was analyzed via ATP detection kit. Mitochondrial ultrastructure change was observed through transmission electron microscope (TEM). Levels of apoptosis-associated molecules (cleaved caspase-3, Bax and Bcl-2) were evaluated via RT-PCR and western blot, respectively. Results: The cells isolated from NP met the criteria for MSC. H2O2 significantly promoted NPMSC apoptosis in a dose and time-dependent manner. Nar showed no cytotoxicity effect on NPMSC up to a concentration of 100 μM for 24 h. Nar exhibited protective effects against H2O2-induced NPMSC apoptosis including apoptosis rate, expressions of proapoptosis and antiapoptosis related genes and protein. Nar could also alleviate H2O2-induced mitochondrial dysfunction of increased mitochondrial ROS production, reduced MMP, decreased intracellular ATP and mitochondrial ultrastructure change. However, these protected effects were inhibited after LY294002 treatment. Conclusions: Our results demonstrated that Nar efficiently attenuated H2O2-induced NPMSC apoptosis and mitochondrial dysfunction. The activation of ROS-mediated PI3K/Akt pathway may be the potential mechanism in this process. PMID: 31294637 [PubMed - as supplied by publisher]

Quick Contact Form