Stem Cell Treatment for Degenerative Disc Disease

Stem Cell Treatment for Degenerative Disc Disease

Degeneration of the intervertebral disc, often called "degenerative disc disease" (DDD) of the spine, is a condition that can be painful and can greatly affect the quality of one's life.


While disc degeneration is a normal part of aging and for most people is not a problem, for certain individuals a degenerated disc can cause severe constant chronic pain. Often, degenerative disc disease can be successfully treated without surgery. One or a combination of treatments such as physical therapy, chiropractic manipulative therapy (CMT) and other chiropractic treatments, osteopathic manipulation, anti-inflammatory medications such as nonsteroidal anti-inflammatory drugs, traction, or spinal injections often provide adequate relief of these troubling symptoms.

Degenerative discs typically show degenerative fibrocartilage and clusters of chondrocytes, suggestive of repair. Inflammation may or may not be present. Histologic examination of disc fragments resected for presumed DDD is routine to exclude malignancy.

Fibrocartilage replaces the gelatinous mucoid material of the nucleus pulposus as the disc changes with age. There may be splits in the annulus fibrosis, permitting herniation of elements of nucleus pulposus. There may also be shrinkage of the nucleus pulposus that produces prolapse of the annulus with secondary osteophyte formation at the margins of the adjacent vertebral body.

The pathologic findings in DDD include protrusion, spondylolysis, and/or subluxation of vertebrae (sponylolisthesis) and spinal stenosis.


Stem Cell Treatment and Degenerative Disc Disease NIH Streaming Database

Related Articles Fibroblasts as a practical alternative to mesenchymal stem cells. J Transl Med. 2018 Jul 27;16(1):212 Authors: Ichim TE, O'Heeron P, Kesari S Abstract Mesenchymal stem cell (MSC) therapy offers great potential for treatment of disease through the multifunctional and responsive ability of these cells. In numerous contexts, MSC have been shown to reduce inflammation, modulate immune responses, and provide trophic factor support for regeneration. While the most commonly used MSC source, the bone marrow provides relatively little starting material for cellular expansion, and requires invasive extraction means, fibroblasts are easily harvested in large numbers from various biological wastes. Additionally, in vitro expansion of fibroblasts is significantly easier given the robustness of these cells in tissue culture and shorter doubling time compared to typical MSC. In this paper we put forward the concept that in some cases, fibroblasts may be utilized as a more practical, and potentially more effective cell therapy than mesenchymal stem cells. Anti-inflammatory, immune modulatory, and regenerative properties of fibroblasts will be discussed in the context of regenerative medicine. PMID: 30053821 [PubMed - in process]

Quick Contact Form