Stem Cell Treatment for Cerebral Palsy

Stem Cell Treatment for Cerebral Palsy

Stem Cell Treatments for Cerebral Palsy are Currently Available at SIRM

Because Cerebral Palsy is a condition that encompasses a group of non-progressive, non-contagious motor conditions that cause physical disability in human development, we aim to treat it with Stem Cell Therapy.

Cerebral refers to the cerebrum, which is the affected area of the brain (although the disorder most likely involves connections between the cortex and other parts of the brain such as the cerebellum), and palsy refers to disorder of movement. Cerebral palsy is caused by damage to the motor control centers of the developing brain and can occur during pregnancy, during childbirth or after birth up to about age three. Resulting limits in movement and posture cause activity limitation and are often accompanied by disturbances of sensation, depth perception and other sight-based perceptual problems, communication ability; impairments can also be found in cognition, and epilepsy is found in about one-third of cases. CP, no matter what the type, is often accompanied by secondary musculoskeletal problems that arise as a result of the underlying etiology.

Cerebral Palsy Stem Cell Treatment

Asphyxia, Infections, and Inflammation during Intrauterine development seemed to be the causes.

There are 4 types:

  1. Spastic - 80% and most common; hypertonic and have what is essentially a neuromuscular mobility impairment (rather than hypotonia or paralysis) stemming from an upper motor neuron lesion in the brain as well as the corticospinal tract or the motor cortex. This damage impairs the ability of some nerve receptors in the spine to properly receive gamma amino butyric acid, leading to hypertonia in the muscles signaled by those damaged nerves.
  2. Ataxic - caused by damage to the cerebellum, and it is common for individuals to have difficulty with visual and/or auditory processing.
  3. Dyskinetic - is mixed muscle tone – both hypertonia and hypotonia mixed with involuntary motions. People with Dyskinetic CP have trouble holding themselves in an upright, steady position for sitting or walking, and often show involuntary motions.
  4. Mixed - A combination of the above

Cerebral Palsy Stem Cell Treatment and stem cell therapy. Cerebral Palsy treatment studies and stem cell protocols:

Related Articles Clemastine rescues myelination defects and promotes functional recovery in hypoxic brain injury. Brain. 2018 01 01;141(1):85-98 Authors: Cree BAC, Niu J, Hoi KK, Zhao C, Caganap SD, Henry RG, Dao DQ, Zollinger DR, Mei F, Shen YA, Franklin RJM, Ullian EM, Xiao L, Chan JR, Fancy SPJ Abstract Hypoxia can injure brain white matter tracts, comprised of axons and myelinating oligodendrocytes, leading to cerebral palsy in neonates and delayed post-hypoxic leukoencephalopathy (DPHL) in adults. In these conditions, white matter injury can be followed by myelin regeneration, but myelination often fails and is a significant contributor to fixed demyelinated lesions, with ensuing permanent neurological injury. Non-myelinating oligodendrocyte precursor cells are often found in lesions in plentiful numbers, but fail to mature, suggesting oligodendrocyte precursor cell differentiation arrest as a critical contributor to failed myelination in hypoxia. We report a case of an adult patient who developed the rare condition DPHL and made a nearly complete recovery in the setting of treatment with clemastine, a widely available antihistamine that in preclinical models promotes oligodendrocyte precursor cell differentiation. This suggested possible therapeutic benefit in the more clinically prevalent hypoxic injury of newborns, and we demonstrate in murine neonatal hypoxic injury that clemastine dramatically promotes oligodendrocyte precursor cell differentiation, myelination, and improves functional recovery. We show that its effect in hypoxia is oligodendroglial specific via an effect on the M1 muscarinic receptor on oligodendrocyte precursor cells. We propose clemastine as a potential therapy for hypoxic brain injuries associated with white matter injury and oligodendrocyte precursor cell maturation arrest. PMID: 29244098 [PubMed - indexed for MEDLINE]
Read more...

Quick Contact Form