Cancer Stem Cell Treatment

Autologous Dendritic Cell Therapy for Cancer is available at SIRM

Cancer represents one of the major causes of mortality worldwide. More than half of patients suffering from cancer succumb to their condition. The primary approaches to treating cancer are surgical resection followed by radiation therapy and chemotherapy. These treatments have resulted in significant benefits to patients with the majority of tumor types, and the clinical outcomes have become more satisfactory. It is recognized that multidisciplinary treatments should be used in cancer treatments, another option proposed for this is immunotherapy. The combination of the traditional methods of surgery, chemotherapy and radiotherapy with immunotherapy, is a new way for anti-cancer therapies to reduce the mortality of cancer patients. The dysfunction of the antigen-specific T cells required to kill the cancer leads to cancer cells being able to grow in cancer patients. Active and adoptive T cell immunotherapies generate T cells that can target cancer cells.

Dendritic cells (DCs) are immune cells that function as antigen-presenting cells. They are able to activate naive CD4+ T helper cells and unprimed CD8+ cytotoxic T lymphocytes. Active immunotherapy, represented by DC-based regimens, has been used to produce tumor-specific antigen-presenting cells and to generate cytotoxic T lymphocyte responses against cancer cells. DCs can capture antigens, process them, and present them with co-stimulation cytokines/messengers to initiate an immune response, like inducing primary T-cell responses.

Adoptive immunotherapy, as conducted at our Asian Stem Cell Institute, is a personalized therapy that uses a patient’s own anti-tumor immune cells to kill cancer cells and may be used to treat several types of cancer, and represents another therapeutic approach against cancer. To date, the adoptive immunotherapy approach is one of the most effective methods for using the body’s immune system to treat cancer. To be used clinically, protocols for the development of these functional DCs must be established for in-clinic use via defined, xenobiotic-free medium conditions.

The purpose of the present study is to determine the cellular immune response in terms of the delayed-type hyper-sensitivity (DTH) skin test and evaluate the subjective clinical outcome and safety of the regimen in cancer patients receiving a DC vaccine.

Vaccination against a single antigen is available using purified and synthetic products, but these have disadvantages because it is unknown which of the identified antigens have the potential to induce an effective antitumor immune response. This study uses unfractionated, autologous, tumor-derived antigens in the form oftumor cell lysates which circumvents this disadvantage.

Tumor lysates as addressed in this protocol, contain multiple known as well as unknown antigens that can be presented to T cells by both MHC class I- and class II-pathways. Therefore, lysate-loaded DCs are more likely to induce the more preferred polyclonal expansion of T cells, including MHC class II restricted T-helper cells. These have been recognized to play an important role in the activation of Cytotoxic T Lymphocytes (CTLs), probably the most important cells in effecting an antitumor immune response. The generation of CTL clones with multiple specificities may be an advantage in heterogeneous tumors and could also reduce the risk of tumor escape variants. Furthermore, lysate from the autologous tumor can be used independently of the HLA type of the patient. A drawback of unfractionated tumor antigens is the possibility of inducing an autoimmune reactivity to epitopes that are shared by normal tissues. However, in clinical trials using lysate or whole tumor cells as the source of antigen, no clinically relevant autoimmune responses have ever been detected.

Personalized dendritic cell vaccines for cancer, via adoptive immunotherapy, are successfully developed and autologously administered to patients coming to Asia, and more specifically, within the Philippines at the Subic Institute for Regenerative Medicine. The results of this case study of cancer and immunotherapy via pulsed dendritic cells, can serve as another example of safety for future cancer vaccine development.

Dendritic Cell Therapy for Cancer:
Related Articles Salinomycin and its derivatives - A new class of multiple-targeted "magic bullets". Eur J Med Chem. 2019 May 09;176:208-227 Authors: Antoszczak M, Huczyński A Abstract The history of drug development clearly shows the scale of painstaking effort leading to a finished product - a highly biologically active agent that would be at the same time no or little toxic to human organism. Moreover, the aim of modern drug discovery can move from "one-molecule one-target" concept to more promising "one-molecule multiple-targets" one, particularly in the context of effective fight against cancer and other complex diseases. Gratifyingly, natural compounds are excellent source of potential drug leads. One of such promising naturally-occurring drug candidates is a polyether ionophore - salinomycin (SAL). This compound should be identified as multi-target agent for two reasons. Firstly, SAL combines a broad spectrum of bioactivity, including antibacterial, antifungal, antiviral, antiparasitic and anticancer activity, with high selectivity of action, proving its significant therapeutic potential. Secondly, the multimodal mechanism of action of SAL has been shown to be related to its interactions with multiple molecular targets and signalling pathways that are synergistic for achieving a therapeutic anticancer effect. On the other hand, according to the Paul Ehrlich's "magic bullet" concept, invariably inspiring the scientists working on design of novel target-selective molecules, a very interesting direction of research is rational chemical modification of SAL. Importantly, many of SAL derivatives have been found to be more promising as chemotherapeutics than the native structure. This concise review article is focused both on the possible role of SAL and its selected analogues in future antimicrobial and/or cancer therapy, and on the potential use of SAL as a new class of multiple-targeted "magic bullet" because of its multimodal mechanism of action. PMID: 31103901 [PubMed - as supplied by publisher]
Related Articles Role of the calcium toolkit in cancer stem cells. Cell Calcium. 2019 May 08;80:141-151 Authors: Terrié E, Coronas V, Constantin B Abstract Cancer stem cells are a subpopulation of tumor cells that proliferate, self-renew and produce more differentiated tumoral cells building-up the tumor. Responsible for the sustained growth of malignant tumors, cancer stem cells are proposed to play significant roles in cancer resistance to standard treatment and in tumor recurrence. Among the mechanisms dysregulated in neoplasms, those related to Ca2+ play significant roles in various aspects of cancers. Ca2+ is a ubiquitous second messenger whose fluctuations of its intracellular concentrations are tightly controlled by channels, pumps, exchangers and Ca2+ binding proteins. These components support the genesis of Ca2+ signals with specific spatio-temporal characteristics that define the cell response. Being involved in the coupling of extracellular events with intracellular responses, the Ca2+ toolkit is often hijacked by cancer cells to promote notably their proliferation and invasion. Growing evidence obtained during the last decade pointed to a role of Ca2+ handling and mishandling in cancer stem cells. In this review, after a general overview of the concept of cancer stem cells we analyse and discuss the studies and current knowledge regarding the complex roles of Ca2+ toolkit and signaling in these cells. We highlight that numbers of Ca2+ signaling actors promote cancer stem cell state and are associated with cell resistance to current cancer treatments and thus may represent promising targets for potential clinical applications. PMID: 31103948 [PubMed - as supplied by publisher]
Related Articles Lipid nanoparticle-mediated siRNA delivery for safe targeting of human CML in vivo. Ann Hematol. 2019 May 18;: Authors: Jyotsana N, Sharma A, Chaturvedi A, Budida R, Scherr M, Kuchenbauer F, Lindner R, Noyan F, Sühs KW, Stangel M, Grote-Koska D, Brand K, Vornlocher HP, Eder M, Thol F, Ganser A, Humphries RK, Ramsay E, Cullis P, Heuser M Abstract Efficient and safe delivery of siRNA in vivo is the biggest roadblock to clinical translation of RNA interference (RNAi)-based therapeutics. To date, lipid nanoparticles (LNPs) have shown efficient delivery of siRNA to the liver; however, delivery to other organs, especially hematopoietic tissues still remains a challenge. We developed DLin-MC3-DMA lipid-based LNP-siRNA formulations for systemic delivery against a driver oncogene to target human chronic myeloid leukemia (CML) cells in vivo. A microfluidic mixing technology was used to obtain reproducible ionizable cationic LNPs loaded with siRNA molecules targeting the BCR-ABL fusion oncogene found in CML. We show a highly efficient and non-toxic delivery of siRNA in vitro and in vivo with nearly 100% uptake of LNP-siRNA formulations in bone marrow of a leukemic model. By targeting the BCR-ABL fusion oncogene, we show a reduction of leukemic burden in our myeloid leukemia mouse model and demonstrate reduced disease burden in mice treated with LNP-BCR-ABL siRNA as compared with LNP-CTRL siRNA. Our study provides proof-of-principle that fusion oncogene specific RNAi therapeutics can be exploited against leukemic cells and promise novel treatment options for leukemia patients. PMID: 31104089 [PubMed - as supplied by publisher]
Related Articles Results from Phase I Clinical Trial with Intraspinal Injection of Neural Stem Cells in Amyotrophic Lateral Sclerosis: A Long-Term Outcome. Stem Cells Transl Med. 2019 May 18;: Authors: Mazzini L, Gelati M, Profico DC, Sorarù G, Ferrari D, Copetti M, Muzi G, Ricciolini C, Carletti S, Giorgi C, Spera C, Frondizi D, Masiero S, Stecco A, Cisari C, Bersano E, Marchi F, Sarnelli MF, Querin G, Cantello R, Petruzzelli F, Maglione A, Zalfa C, Binda E, Visioli A, Trombetta D, Torres B, Bernardini L, Gaiani A, Massara M, Paolucci S, Boulis NM, Vescovi AL, ALS-NSCs Trial Study Group Abstract The main objective of this phase I trial was to assess the feasibility and safety of microtransplanting human neural stem cell (hNSC) lines into the spinal cord of patients with amyotrophic lateral sclerosis (ALS). Eighteen patients with a definite diagnosis of ALS received microinjections of hNSCs into the gray matter tracts of the lumbar or cervical spinal cord. Patients were monitored before and after transplantation by clinical, psychological, neuroradiological, and neurophysiological assessment. For up to 60 months after surgery, none of the patients manifested severe adverse effects or increased disease progression because of the treatment. Eleven patients died, and two underwent tracheotomy as a result of the natural history of the disease. We detected a transitory decrease in progression of ALS Functional Rating Scale Revised, starting within the first month after surgery and up to 4 months after transplantation. Our results show that transplantation of hNSC is a safe procedure that causes no major deleterious effects over the short or long term. This study is the first example of medical transplantation of a highly standardized cell drug product, which can be reproducibly and stably expanded ex vivo, comprising hNSC that are not immortalized, and are derived from the forebrain of the same two donors throughout this entire study as well as across future trials. Our experimental design provides benefits in terms of enhancing both intra- and interstudy reproducibility and homogeneity. Given the potential therapeutic effects of the hNSCs, our observations support undertaking future phase II clinical studies in which increased cell dosages are studied in larger cohorts of patients. Stem Cells Translational Medicine 2019. PMID: 31104357 [PubMed - as supplied by publisher]

Quick Contact Form