Stem Cell Treatment for Autism

Stem Cell Treatments for Autism are currently available at SIRM

Stem Cell Therapy for Autism Stem Cell Treatment  Autism

Autism Background:

About a third to a half of individuals with autism do not develop enough natural speech to meet their daily communication needs. Differences in communication may be present from the first year of life, and may include delayed onset of babbling, unusual gestures, diminished responsiveness, and vocal patterns that are not synchronized with the caregiver. In the second and third years, autistic children have less frequent and less diverse babbling, consonants, words, and word combinations; their gestures are less often integrated with words. Autistic children are less likely to make requests or share experiences, and are more likely to simply repeat others' words (echolalia) or reverse pronouns. Joint attention seems to be necessary for functional speech, and deficits in joint attention seem to distinguish infants with ASD. for example, they may look at a pointing hand instead of the pointed-at object, and they consistently fail to point at objects in order to comment on or share an experience. Autistic children may have difficulty with imaginative play and with developing symbols into language.

Repetitive behavior

Forms of repetitive or restricted behavior (RBS-R):

  • Stereotypy is repetitive movement, such as hand flapping, making sounds, head rolling, or body rocking.
  • Compulsive behavior is intended and appears to follow rules, such as arranging objects in stacks or lines.
  • Sameness is resistance to change; for example, insisting that the furniture not be moved or refusing to be interrupted.
  • Ritualistic behavior involves an unvarying pattern of daily activities, such as an unchanging menu or a dressing ritual. This is closely associated with sameness and an independent validation has suggested combining the two factors.
  • Restricted behavior is limited in focus, interest, or activity, such as preoccupation with a single television program, toy, or game.
  • Self-injury includes movements that injure or can injure the person, such as eye poking, skin picking, hand biting, and head banging. A 2007 study reported that self-injury at some point affected about 30% of children with ASD.

No single repetitive or self-injurious behavior seems to be specific to autism, but only autism appears to have an elevated pattern of occurrence and severity of these behaviors.

Autism treatment studies and stem cell protocols:

Related Articles Characterization and transplantation of enteric neural crest cells from human induced pluripotent stem cells. Mol Psychiatry. 2016 Oct 25;: Authors: Li W, Huang L, Zeng J, Lin W, Li K, Sun J, Huang W, Chen J, Wang G, Ke Q, Duan J, Lai X, Chen R, Liu M, Liu Y, Wang T, Yang X, Chen Y, Xia H, Xiang AP Abstract The enteric nervous system (ENS) is recognized as a second brain because of its complexity and its largely autonomic control of bowel function. Recent progress in studying the interactions between the ENS and the central nervous system (CNS) has implicated alterations of the gut/brain axis as a possible mechanism in the pathophysiology of autism spectrum disorders (ASDs), Parkinson's disease (PD) and other human CNS disorders, whereas the underlying mechanisms are largely unknown because of the lack of good model systems. Human induced pluripotent stem cells (hiPSCs) have the ability to proliferate indefinitely and differentiate into cells of all three germ layers, thus making iPSCs an ideal source of cells for disease modelling and cell therapy. Here, hiPSCs were induced to differentiate into neural crest stem cells (NCSCs) efficiently. When co-cultured with smooth muscle layers of ganglionic gut tissue, the NCSCs differentiated into different subtypes of mature enteric-like neurons expressing nitric oxide synthase (nNOS), vasoactive intestinal polypeptide (VIP), choline acetyltransferase (ChAT) or calretinin with typical electrophysiological characteristics of functional neurons. Furthermore, when they were transplanted into aneural or aganglionic chick, mouse or human gut tissues in ovo, in vitro or in vivo, hiPSC-derived NCSCs showed extensive migration and neural differentiation capacity, generating neurons and glial cells that expressed phenotypic markers characteristic of the enteric nervous system. Our results indicate that enteric NCSCs derived from hiPSCs supply a powerful tool for studying the pathogenesis of gastrointestinal disorders and brain/gut dysfunction and represent a potentially ideal cell source for enteric neural transplantation treatments.Molecular Psychiatry advance online publication, 25 October 2016; doi:10.1038/mp.2016.191. PMID: 27777423 [PubMed - as supplied by publisher]

Quick Contact Form