Stem Cell Treatment for Autism

Stem Cell Treatments for Autism are currently available at ASCI

Stem Cell Therapy for Autism Stem Cell Treatment  Autism

Autism Background:

About a third to a half of individuals with autism do not develop enough natural speech to meet their daily communication needs. Differences in communication may be present from the first year of life, and may include delayed onset of babbling, unusual gestures, diminished responsiveness, and vocal patterns that are not synchronized with the caregiver. In the second and third years, autistic children have less frequent and less diverse babbling, consonants, words, and word combinations; their gestures are less often integrated with words. Autistic children are less likely to make requests or share experiences, and are more likely to simply repeat others' words (echolalia) or reverse pronouns. Joint attention seems to be necessary for functional speech, and deficits in joint attention seem to distinguish infants with ASD. for example, they may look at a pointing hand instead of the pointed-at object, and they consistently fail to point at objects in order to comment on or share an experience. Autistic children may have difficulty with imaginative play and with developing symbols into language.

Repetitive behavior

Forms of repetitive or restricted behavior (RBS-R):

  • Stereotypy is repetitive movement, such as hand flapping, making sounds, head rolling, or body rocking.
  • Compulsive behavior is intended and appears to follow rules, such as arranging objects in stacks or lines.
  • Sameness is resistance to change; for example, insisting that the furniture not be moved or refusing to be interrupted.
  • Ritualistic behavior involves an unvarying pattern of daily activities, such as an unchanging menu or a dressing ritual. This is closely associated with sameness and an independent validation has suggested combining the two factors.
  • Restricted behavior is limited in focus, interest, or activity, such as preoccupation with a single television program, toy, or game.
  • Self-injury includes movements that injure or can injure the person, such as eye poking, skin picking, hand biting, and head banging. A 2007 study reported that self-injury at some point affected about 30% of children with ASD.

No single repetitive or self-injurious behavior seems to be specific to autism, but only autism appears to have an elevated pattern of occurrence and severity of these behaviors.





Autism treatment studies and stem cell protocols:


Related Articles Human Inducible Pluripotent Stem Cells and Autism Spectrum Disorder: Emerging Technologies. Autism Res. 2015 Oct 1; Authors: Nestor MW, Phillips AW, Artimovich E, Nestor JE, Hussman JP, Blatt GJ Abstract Autism Spectrum Disorder (ASD) is a behaviorally defined neurodevelopmental condition. Symptoms of ASD cover the spectrum from mild qualitative differences in social interaction to severe communication and social and behavioral challenges that require lifelong support. Attempts at understanding the pathophysiology of ASD have been hampered by a multifactorial etiology that stretches the limits of current behavioral and cell based models. Recent progress has implicated numerous autism-risk genes but efforts to gain a better understanding of the underlying biological mechanisms have seen slow progress. This is in part due to lack of appropriate models for complete molecular and pharmacological studies. The advent of induced pluripotent stem cells (iPSC) has reinvigorated efforts to establish more complete model systems that more reliably identify molecular pathways and predict effective drug targets and candidates in ASD. iPSCs are particularly appealing because they can be derived from human patients and controls for research purposes and provide a technology for the development of a personalized treatment regimen for ASD patients. The pluripotency of iPSCs allow them to be reprogrammed into a number of CNS cell types and phenotypically screened across many patients. This quality is already being exploited in protocols to generate 2-dimensional (2-D) and three-dimensional (3-D) models of neurons and developing brain structures. iPSC models make powerful platforms that can be interrogated using electrophysiology, gene expression studies, and other cell-based quantitative assays. iPSC technology has limitations but when combined with other model systems has great potential for helping define the underlying pathophysiology of ASD. Autism Res 2015. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. PMID: 26426199 [PubMed - as supplied by publisher]

Quick Contact Form