Stem Cell Treatment for Alzheimer's Disease

Stem Cell Treatment for Alzheimer's

Stem Cell Treatments for Alzheimer's Disease is now available at SIRM

Alzheimer's disease (AD) is the most common form of dementia; it worsens as it progresses, and eventually leads to death. It was first described by German psychiatrist and neuropathologist Alois Alzheimer in 1906 and was named after him.

Most often, AD is diagnosed in people over 65 years of age, although the less-prevalent early-onset Alzheimer's can occur much earlier. In 2006, there were 26.6 million sufferers worldwide. Alzheimer's is predicted to affect 1 in 85 people globally by 2050.

Although Alzheimer's disease develops differently for every individual, there are many common symptoms. Early symptoms are often mistakenly thought to be 'age-related' concerns, or manifestations of stress. In the early stages, the most common symptom is difficulty in remembering recent events. When AD is suspected, the diagnosis is usually confirmed with tests that evaluate behaviour and thinking abilities, often followed by a brain scan if available.

Stem Cell Treatment for AlzheimersCausation

The cause for most Alzheimer's cases is still essentially unknown (except for 1% to 5% of cases where genetic differences have been identified). Several competing hypotheses exist trying to explain the cause of the disease. The oldest, on which most currently available drug therapies are based, is the cholinergic hypothesis, which proposes that AD is caused by reduced synthesis of the neurotransmitter acetylcholine. The cholinergic hypothesis has not maintained widespread support, largely because medications intended to treat acetylcholine deficiency have not been very effective. Other cholinergic effects have also been proposed, for example, initiation of large-scale aggregation of amyloid, leading to generalised neuroinflammation.

A 2004 study found that deposition of amyloid plaques does not correlate well with neuron loss. This observation supports the tau hypothesis, the idea that tau protein abnormalities initiate the disease cascade. In this model, hyperphosphorylated tau begins to pair with other threads of tau. Eventually, they form neurofibrillary tangles inside nerve cell bodies. When this occurs, the microtubules disintegrate, collapsing the neuron's transport system. This may result first in malfunctions in biochemical communication between neurons and later in the death of the cells.

Another hypothesis asserts that the disease may be caused by age-related myelin breakdown in the brain. Demyelination leads to axonal transport disruptions. Iron released during myelin breakdown is hypothesized to cause further damage. Homeostatic myelin repair processes contribute to the development of proteinaceous deposits such as amyloid-beta and tau.

Oxidative stress may be significant in the formation of the pathology.

Alzheimers Stem Cell Treatment and stem cell therapy. Alzheimers treatment studies and stem cell protocols:

Related Articles Resveratrol promotes hUC-MSCs engraftment and neural repair in a mouse model of Alzheimer's disease. Behav Brain Res. 2018 Feb 26;339:297-304 Authors: Wang X, Ma S, Yang B, Huang T, Meng N, Xu L, Xing Q, Zhang Y, Zhang K, Li Q, Zhang T, Wu J, Yang GL, Guan F, Wang J Abstract Mesenchymal stem cell transplantation is a promising therapeutic approach for Alzheimer's disease (AD). However, poor engraftment and limited survival rates are major obstacles for its clinical application. Resveratrol, an activator of silent information regulator 2, homolog 1 (SIRT1), regulates cell destiny and is beneficial for neurodegenerative disorders. The present study is designed to explore whether resveratrol regulates the fate of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) and whether hUC-MSCs combined with resveratrol would be efficacious in the treatment of neurodegeneration in a mouse model of AD through SIRT1 signaling. Herein, we report that resveratrol facilitates hUC-MSCs engraftment in the hippocampus of AD mice and resveratrol enhances the therapeutic effects of hUC-MSCs in this model as demonstrated by improved learning and memory in the Morris water maze, enhanced neurogenesis and alleviated neural apoptosis in the hippocampus of the AD mice. Moreover, hUC-MSCs and resveratrol jointly regulate expression of hippocampal SIRT1, PCNA, p53, ac-p53, p21, and p16. These data strongly suggests that hUC-MSCs transplantation combined with resveratrol may be an effective therapy for AD. PMID: 29102593 [PubMed - indexed for MEDLINE]
Read more...
Related Articles Molecular Pharmacology of Rosmarinic and Salvianolic Acids: Potential Seeds for Alzheimer's and Vascular Dementia Drugs. Int J Mol Sci. 2018 Feb 03;19(2): Authors: Habtemariam S Abstract Both caffeic acid and 3,4-dihydroxyphenyllactic acid (danshensu) are synthesized through two distinct routs of the shikimic acid biosynthesis pathway. In many plants, especially the rosemary and sage family of Lamiaceae, these two compounds are joined through an ester linkage to form rosmarinic acid (RA). A further structural diversity of RA derivatives in some plants such as Salvia miltiorrhiza Bunge is a form of RA dimer, salvianolic acid-B (SA-B), that further give rise to diverse salvianolic acid derivatives. This review provides a comprehensive perspective on the chemistry and pharmacology of these compounds related to their potential therapeutic applications to dementia. The two common causes of dementia, Alzheimer's disease (AD) and stroke, are employed to scrutinize the effects of these compounds in vitro and in animal models of dementia. Key pharmacological mechanisms beyond the common antioxidant and anti-inflammatory effects of polyphenols are highlighted with emphasis given to amyloid beta (Aβ) pathologies among others and neuronal regeneration from stem cells. PMID: 29401682 [PubMed - indexed for MEDLINE]
Read more...

Quick Contact Form