Stem Cell Treatment for Alzheimer's Disease

Stem Cell Treatment for Alzheimer's

Stem Cell Treatments for Alzheimer's Disease is now available at SIRM

Alzheimer's disease (AD) is the most common form of dementia; it worsens as it progresses, and eventually leads to death. It was first described by German psychiatrist and neuropathologist Alois Alzheimer in 1906 and was named after him.

Most often, AD is diagnosed in people over 65 years of age, although the less-prevalent early-onset Alzheimer's can occur much earlier. In 2006, there were 26.6 million sufferers worldwide. Alzheimer's is predicted to affect 1 in 85 people globally by 2050.

Although Alzheimer's disease develops differently for every individual, there are many common symptoms. Early symptoms are often mistakenly thought to be 'age-related' concerns, or manifestations of stress. In the early stages, the most common symptom is difficulty in remembering recent events. When AD is suspected, the diagnosis is usually confirmed with tests that evaluate behaviour and thinking abilities, often followed by a brain scan if available.

Stem Cell Treatment for AlzheimersCausation

The cause for most Alzheimer's cases is still essentially unknown (except for 1% to 5% of cases where genetic differences have been identified). Several competing hypotheses exist trying to explain the cause of the disease. The oldest, on which most currently available drug therapies are based, is the cholinergic hypothesis, which proposes that AD is caused by reduced synthesis of the neurotransmitter acetylcholine. The cholinergic hypothesis has not maintained widespread support, largely because medications intended to treat acetylcholine deficiency have not been very effective. Other cholinergic effects have also been proposed, for example, initiation of large-scale aggregation of amyloid, leading to generalised neuroinflammation.

A 2004 study found that deposition of amyloid plaques does not correlate well with neuron loss. This observation supports the tau hypothesis, the idea that tau protein abnormalities initiate the disease cascade. In this model, hyperphosphorylated tau begins to pair with other threads of tau. Eventually, they form neurofibrillary tangles inside nerve cell bodies. When this occurs, the microtubules disintegrate, collapsing the neuron's transport system. This may result first in malfunctions in biochemical communication between neurons and later in the death of the cells.

Another hypothesis asserts that the disease may be caused by age-related myelin breakdown in the brain. Demyelination leads to axonal transport disruptions. Iron released during myelin breakdown is hypothesized to cause further damage. Homeostatic myelin repair processes contribute to the development of proteinaceous deposits such as amyloid-beta and tau.

Oxidative stress may be significant in the formation of the pathology.

Alzheimers Stem Cell Treatment and stem cell therapy. Alzheimers treatment studies and stem cell protocols:

Related Articles Cold Atmospheric Plasmas: A Novel and Promising Way to Treat Neurological Diseases. Trends Biotechnol. 2018 06;36(6):582-583 Authors: Xiong Z Abstract Cold atmospheric plasmas (CAPs) can enhance neural cell differentiation into neurons both in vitro and in vivo, which is of great interest for medical treatment of neurodegenerative diseases like Alzheimer's disease and traumatic injuries of the central nervous system. CAPs represent a promising method for future neurological disease therapy. PMID: 29685819 [PubMed - indexed for MEDLINE]
Read more...
Related Articles Memantine potentiates cytarabine-induced cell death of acute leukemia correlating with inhibition of Kv1.3 potassium channels, AKT and ERK1/2 signaling. Cell Commun Signal. 2019 Jan 16;17(1):5 Authors: Lowinus T, Heidel FH, Bose T, Nimmagadda SC, Schnöder T, Cammann C, Schmitz I, Seifert U, Fischer T, Schraven B, Bommhardt U Abstract BACKGROUND: Treatment of acute leukemia is challenging and long-lasting remissions are difficult to induce. Innovative therapy approaches aim to complement standard chemotherapy to improve drug efficacy and decrease toxicity. Promising new therapeutic targets in cancer therapy include voltage-gated Kv1.3 potassium channels, but their role in acute leukemia is unclear. We reported that Kv1.3 channels of lymphocytes are blocked by memantine, which is known as an antagonist of neuronal N-methyl-D-aspartate type glutamate receptors and clinically applied in therapy of advanced Alzheimer disease. Here we evaluated whether pharmacological targeting of Kv1.3 channels by memantine promotes cell death of acute leukemia cells induced by chemotherapeutic cytarabine. METHODS: We analyzed acute lymphoid (Jurkat, CEM) and myeloid (HL-60, Molm-13, OCI-AML-3) leukemia cell lines and patients' acute leukemic blasts after treatment with either drug alone or the combination of cytarabine and memantine. Patch-clamp analysis was performed to evaluate inhibition of Kv1.3 channels and membrane depolarization by memantine. Cell death was determined with propidium iodide, Annexin V and SYTOX staining and cytochrome C release assay. Molecular effects of memantine co-treatment on activation of Caspases, AKT, ERK1/2, and JNK signaling were analysed by Western blot. Kv1.3 channel expression in Jurkat cells was downregulated by shRNA. RESULTS: Our study demonstrates that memantine inhibits Kv1.3 channels of acute leukemia cells and in combination with cytarabine potentiates cell death of acute lymphoid and myeloid leukemia cell lines as well as primary leukemic blasts from acute leukemia patients. At molecular level, memantine co-application fosters concurrent inhibition of AKT, S6 and ERK1/2 and reinforces nuclear down-regulation of MYC, a common target of AKT and ERK1/2 signaling. In addition, it augments mitochondrial dysfunction resulting in enhanced cytochrome C release and activation of Caspase-9 and Caspase-3 leading to amplified apoptosis. CONCLUSIONS: Our study underlines inhibition of Kv1.3 channels as a therapeutic strategy in acute leukemia and proposes co-treatment with memantine, a licensed and safe drug, as a potential approach to promote cytarabine-based cell death of various subtypes of acute leukemia. PMID: 30651113 [PubMed - in process]
Read more...

Quick Contact Form