Stem Cell Treatment for ALS

ALS Stem Cell Treatment

ALS Stem Cell Treatment

"My life and millions of others are in the hands of Congress. We are already seeing the incredible potential of stem cells to replace what is destroyed in ALS, but we need the federal government to mentor research along in the most responsible, humane way.” Pointing out that, “non-profits like Project A.L.S. and private industry have started stem cell replacement on the right track,”...“do the right thing and take us to the next level with this life-saving science.

Jenifer Estess (1963–2003) founder of Project A.L.S testifying in 2000 before Senator Arlen Specter’s sub-committee on Labor, Health, Human Services and Education

Organizatiom of the Brain: Cell Types

Stem Cell Treatment for ALS

 

ALS Stem Cell Treatment Case Review

Amyotrophic Lateral Sclerosis (ALS), also referred to as Lou Gehrig's disease, is a form of motor neuron disease  caused by the degeneration of upper and lower neurons, located in the ventral horn of the spinal cord and the cortical neurons that provide their efferent input.

The condition is often called Lou Gehrig's disease in North America, after the New York Yankees baseball player who was diagnosed with the disease in 1939. The disorder is characterized by rapidly progressive weakness, muscle atrophy and fasciculations, spasticity, dysarthria, dysphagia, and respiratory compromise. Sensory function generally is spared, as is autonomic, and oculomotor activity. ALS is a progressive, fatal, neurodegenerative disease

Signs and symptoms

The disorder causes muscle weakness and atrophy throughout the body caused by degeneration of the upper and lower motor neurons. Unable to function, the muscles weaken and atrophy. Affected individuals may ultimately lose the ability to initiate and control all voluntary movement, although bladder and bowel sphincters and the muscles responsible for eye movement are usually, but not always, spared.

Cognitive function is generally spared for most patients although some (~5%) also have frontotemporal dementia. A higher proportion of patients (~30-50%) also have more subtle cognitive changes which may go unnoticed but are revealed by detailed neuropsychological testing. Sensory nerves and the autonomic nervous system, which controls functions like sweating, are generally unaffected but may be involved for some patients.

Initial symptoms

The earliest symptoms of ALS are typically obvious weakness and/or muscle atrophy. Other presenting symptoms include muscle fasciculation (twitching), cramping, or stiffness of affected muscles; muscle weakness affecting an arm or a leg; and/or slurred and nasal speech. The parts of the body affected by early symptoms of ALS depend on which motor neurons in the body are damaged first. About 75% of people contracting the disease experience "limb onset" ALS.

SOD1

The cause of ALS is not known, though an important step toward determining the cause came in 1993 when scientists discovered that mutations in the gene that produces the Cu/Zn superoxide dismutase (SOD1) enzyme were associated with some cases (approximately 20%) of familial ALS. This enzyme is a powerful antioxidant that protects the body from damage caused by superoxide, a toxic free radical generated in the mitochondria. Free radicals are highly reactive molecules produced by cells during normal metabolism again largely by the mitochondria. Free radicals can accumulate and cause damage to both mitochondrial and nuclear DNA and proteins within cells.

Studies also have focused on the role of glutamate in motor neuron degeneration. Glutamate is one of the chemical messengers or neurotransmitters in the brain. Scientists have found that, compared to healthy people, ALS patients have higher levels of glutamate in the serum and spinal fluid. Riluzole is currently the only FDA approved drug for ALS and targets glutamate transporters. It only has a modest effect on survival, however, suggesting that excess glutamate is not the sole cause of the disease.

Diagnosis

No test can provide a definite diagnosis of ALS, although the presence of upper and lower motor neuron signs in a single limb is strongly suggestive. Instead, the diagnosis of ALS is primarily based on the symptoms and signs the physician observes in the patient and a series of tests to rule out other diseases. Physicians obtain the patient's full medical history and usually conduct a neurologic examination at regular intervals to assess whether symptoms such as muscle weakness, atrophy of muscles, hyperreflexia, and spasticity are getting progressively worse.

ALS Stem Cell Treatment and stem cell therapy. AlS treatment studies and stem cell protocols:
Related Articles Whole-exome sequencing in amyotrophic lateral sclerosis suggests NEK1 is a risk gene in Chinese. Genome Med. 2017 Nov 17;9(1):97 Authors: Gratten J, Zhao Q, Benyamin B, Garton F, He J, Leo PJ, Mangelsdorf M, Anderson L, Zhang ZH, Chen L, Chen XD, Cremin K, Deng HW, Edson J, Han YY, Harris J, Henders AK, Jin ZB, Li Z, Lin Y, Liu X, Marshall M, Mowry BJ, Ran S, Reutens DC, Song S, Tan LJ, Tang L, Wallace RH, Wheeler L, Wu J, Yang J, Xu H, Visscher PM, Bartlett PF, Brown MA, Wray NR, Fan D Abstract BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a progressive neurological disease characterised by the degeneration of motor neurons, which are responsible for voluntary movement. There remains limited understanding of disease aetiology, with median survival of ALS of three years and no effective treatment. Identifying genes that contribute to ALS susceptibility is an important step towards understanding aetiology. The vast majority of published human genetic studies, including for ALS, have used samples of European ancestry. The importance of trans-ethnic studies in human genetic studies is widely recognised, yet a dearth of studies of non-European ancestries remains. Here, we report analyses of novel whole-exome sequencing (WES) data from Chinese ALS and control individuals. METHODS: WES data were generated for 610 ALS cases and 460 controls drawn from Chinese populations. We assessed evidence for an excess of rare damaging mutations at the gene level and the gene set level, considering only singleton variants filtered to have allele frequency less than 5 × 10(-5) in reference databases. To meta-analyse our results with a published study of European ancestry, we used a Cochran-Mantel-Haenszel test to compare gene-level variant counts in cases vs controls. RESULTS: No gene passed the genome-wide significance threshold with ALS in Chinese samples alone. Combining rare variant counts in Chinese with those from the largest WES study of European ancestry resulted in three genes surpassing genome-wide significance: TBK1 (p = 8.3 × 10(-12)), SOD1 (p = 8.9 × 10(-9)) and NEK1 (p = 1.1 × 10(-9)). In the Chinese data alone, SOD1 and NEK1 were nominally significantly associated with ALS (p = 0.04 and p = 7 × 10(-3), respectively) and the case/control frequencies of rare coding variants in these genes were similar in Chinese and Europeans (SOD1: 1.5%/0.2% vs 0.9%/0.1%, NEK1 1.8%/0.4% vs 1.9%/0.8%). This was also true for TBK1 (1.2%/0.2% vs 1.4%/0.4%), but the association with ALS in Chinese was not significant (p = 0.14). CONCLUSIONS: While SOD1 is already recognised as an ALS-associated gene in Chinese, we provide novel evidence for association of NEK1 with ALS in Chinese, reporting variants in these genes not previously found in Europeans. PMID: 29149916 [PubMed - in process]
Read more...
Related Articles SpinoBot: An MRI-Guided Needle Positioning System for Spinal Cellular Therapeutics. Ann Biomed Eng. 2017 Nov 17;: Authors: Squires A, Oshinski JN, Boulis NM, Tse ZTH Abstract The neurodegenerative disease amyotrophic lateral sclerosis (ALS) results in the death of motor neurons in voluntary muscles. There are no cures for ALS and few available treatments. In studies with small animal models, injection of cellular therapeutics into the anterior horn of the spinal cord has been shown to inhibit the progression of ALS. It was hypothesized that spinal injection could be made faster and less invasive with the aid of a robot. The robotic system presented-SpinoBot-uses MRI guidance to position a needle for percutaneous injection into the spinal cord. With four degrees of freedom (DOF) provided by two translation stages and two rotational axes, SpinoBot proved capable of advanced targeting with a mean error of 1.12 mm and standard deviation of 0.97 mm in bench tests, and a mean error of 2.2 mm and standard deviation of 0.85 mm in swine cadaver tests. SpinoBot has shown less than 3% signal-to-noise ratio reduction in 3T MR imaging quality, demonstrating its compliance to the MRI environment. With the aid of SpinoBot, the length of the percutaneous injection procedure is reduced to less than 60 min with 10 min for each additional insertion. Although SpinoBot is designed for ALS treatment, it could potentially be used for other procedures that require precise access to the spine. PMID: 29150766 [PubMed - as supplied by publisher]
Read more...

Quick Contact Form