Macular Degeneration Stem Cell Treatment

Macular Degeneration and Stem Cell Therapy

What is Macular Degeneration?

Macular Degeneration and Stem Cell Therapy

Macular Degeneration and Stem Cell Therapy

Macular Degeneration or Age Related Macular Degeneration (AMD,ARMD) is a eyesight condition which mostly affects older people. AMD results in a loss of vision in the center of the visual field (the macula) because of damage or wear to the retina.

AMD can occur in either a wet or dry types. AMD is a major cause of visual impairment in people of 50 years age or more. AMD can make it difficult or impossible to read or to be able to recognize faces, although enough peripheral vision can remain to allow normal daily life.
Although some macular dystrophies that younger people get are referred to as macular degeneration, the term generally refers to age-related macular degeneration.


Stemming vision loss with stem cells.

J Clin Invest. 2010 Sep 1;120(9):3012-21

Authors: Marchetti V, Krohne TU, Friedlander DF, Friedlander M

Dramatic advances in the field of stem cell research have raised the possibility of using these cells to treat a variety of diseases. The eye is an excellent target organ for such cell-based therapeutics due to its ready accessibility, the prevalence of vasculo- and neurodegenerative diseases affecting vision, and the availability of animal models to demonstrate proof of concept. In fact, stem cell therapies have already been applied to the treatment of disease affecting the ocular surface, leading to preservation of vision. Diseases in the back of the eye, such as macular degeneration, diabetic retinopathy, and inherited retinal degenerations, present greater challenges, but rapidly emerging stem cell technologies hold the promise of autologous grafts to stabilize vision loss through cellular replacement or paracrine rescue effects.

PMID: 20811157 [PubMed - indexed for MEDLINE]

Related Articles Retinal Structure Measurements as Inclusion Criteria for Stem Cell-Based Therapies of Retinal Degenerations. Invest Ophthalmol Vis Sci. 2016 Apr 01;57(5):ORSFn1-9 Authors: Jacobson SG, Matsui R, Sumaroka A, Cideciyan AV Abstract PURPOSE: We reviewed and illustrated the most optimal retinal structural measurements to make in stem cell clinical trials. METHODS: Optical coherence tomography (OCT) and autofluorescence (AF) imaging were used to evaluate patients with severe visual loss from nonsyndromic and syndromic retinitis pigmentosa (RP), ABCA4-Stargardt disease, and nonneovascular age-related macular degeneration (AMD). Outer nuclear layer (ONL), rod outer segment (ROS) layer, inner retina, ganglion cell layer (GCL), and nerve fiber layer (NFL) thicknesses were quantified. RESULTS: All patients had severely reduced visual acuities. Retinitis pigmentosa patients had limited visual fields; maculopathy patients had central scotomas with retained peripheral function. For the forms of RP illustrated, there was detectable albeit severely reduced ONL across the scanned retina, and normal or hyperthick GCL and NFL. Maculopathy patients had no measurable ONL centrally; it became detectable with eccentricity. Some maculopathy patients showed unexpected GCL losses. Autofluorescence imaging illustrated central losses of RPE integrity. A hypothetical scheme to relate patient data with different phases of retinal remodeling in animal models of retinal degeneration was presented. CONCLUSIONS: Stem cell science is advancing, but it is not too early to open the discussion of criteria for patient selection and monitoring. Available clinical tools, such as OCT and AF imaging, can provide inclusion/exclusion criteria and robust objective outcomes. Accepting that early trials may not lead to miraculous cures, we should be prepared to know why-scientifically and clinically-so we can improve subsequent trials. We also must determine if retinal remodeling is an impediment to efficacy. PMID: 27116670 [PubMed - indexed for MEDLINE]
Related Articles Long-term results after limited macular translocation surgery for wet age-related macular degeneration. PLoS One. 2017;12(5):e0177241 Authors: Oshima H, Iwase T, Ishikawa K, Yamamoto K, Terasaki H Abstract PURPOSE: To evaluate the long-term results of limited macular translocation (LMT) surgery with radial chorioscleral outfolding in patients with wet age-related macular degeneration (AMD) and subfoveal choroidal neovascularization (CNV). In addition, to identify the factors associated with the final best-corrected visual acuity (BCVA). METHODS: The medical records of 20 eyes of 20 consecutive patients (65.2±9.8 years) who had undergone LMT for the treatment of wet AMD and were followed for at least 5 years, were reviewed. The surgical outcomes including the BCVA, degree of foveal displacement, and complications were recorded. RESULTS: The mean foveal displacement was 1332 ± 393 μm after the LMT. The CNV was removed in 16 eyes and photocoagulated in 4 eyes. The mean preoperative VA was 0.83 ± 0.33 logMAR units which significantly improved to 0.59 ± 0.37 logMAR units at 1 year after the surgery (P = 0.015). This BCVA was maintained at 0.59 ± 0.41 logMAR units on the final examination. The final BCVA was significantly correlated with that at 1 year after the surgery (r = 0.83, P<0.001). Multiple linear regression analysis showed that the final BCVA was significantly correlated with the BCVA at 1 year after the surgery (P<0.001), a recurrence of a CNV (P = 0.001), and the age (P = 0.022). CONCLUSIONS: LMT improves the BCVA significantly at 1 year, and the improved BCVA lasted for at least 5 years. These results indicate that the impaired function of the sensory retina at the fovea can recover on the new RPE after the displacement for at least 5 years. The ability to maintain good retinal function on the new RPE for a long period is important for future treatments of CNVs such as the transplantation of RPE cells and stem cells. PMID: 28542257 [PubMed - in process]

Quick Contact Form