Liver Disease Stem Cell Treatment

Liver Disease and Stem Cell Therapy at SIRM


Liver Disease and Stem Cell Treatment

Liver Disease and Stem Cell Treatment

What is Liver Disease?
The liver is under your ribs on the right hand side. The liver is the largest organ in the body and if the liver fails completely then untreated only 3-4 days to find a donor liver for a possible transplant.

Corrently there is no such thing as an artificial liver.

The liver not only produces many proteins it creates energy from our food. The liver removes waste products in our body and also removes unwanted drugs such as nicotine and alcohol.

The most common Liver conditions include infections such as hepatitis A, B, C, E, alcohol damage, fatty liver, cirrhosis, cancer, drug damage especially paracetamol (acetaminophen) and cancer drugs.


The liver does not have any pain nerves so liver disease can be unexpected.
Liver disease is commonly related to alcohol and diet problems.



Use of hepatocyte and stem cells for treatment of post-resectional liver failure: are we there yet?

Ezzat TM, Dhar DK, Newsome PN, Malagó M, Olde Damink SW.

2011 Jul;31(6):773-84. doi: 10.1111/j.1478-3231.2011.02530.x. Epub 2011 Apr 19.

HPB and Liver Transplantation Surgery, Royal Free Hospital, University College London, Pond Street, London, UK.

Post-operative liver failure following extensive resections for liver tumours is a rare but significant complication. The only effective treatment is liver transplantation (LT); however, there is a debate about its use given the high mortality compared with the outcomes of LT for chronic liver diseases.

Cell therapy has emerged as a possible alternative to LT especially as endogenous hepatocyte proliferation is likely inhibited in the setting of prior chemo/radiotherapy. Both hepatocyte and stem cell transplantations have shown promising results in the experimental setting; however, there are few reports on their clinical application.

This review identifies the potential stem cell sources in the body, and highlights the triggering factors that lead to their mobilization and integration in liver regeneration following major liver resections.

Therapeutic plasticity of stem cells and allograft tolerance.

Cytotherapy. 2011 May 10;

Authors: Sordi V, Piemonti L

Abstract Transplantation is the treatment of choice for many diseases that result in organ failure, but its success is limited by organ rejection. Stem cell therapy has emerged in the last years as a promising strategy for the induction of tolerance after organ transplantation. Here we discuss the ability of different stem cell types, in particular mesenchymal stromal cells, neuronal stem/progenitor cells, hematopoietic stem cells and embryonic stem cells, to modulate the immune response and induce peripheral or central tolerance.

These stem cells have been studied to explore tolerance induction to several transplanted organs, such as heart, liver and kidney. Different strategies, including approaches to generating tolerance in islet transplantation, are discussed here.

PMID: 21554176 [PubMed - as supplied by publisher]



Impaired function of bone marrow-derived endothelial progenitor cells in  murine liver fibrosis.

Biosci Trends. 2011 Apr;5(2):77-82

Authors: Shirakura K, Masuda H, Kwon SM, Obi S, Ito R, Shizuno T, Kurihara Y,  Mine T, Asahara T

Liver fibrosis (LF) caused by chronic liver damage has been considered as an  irreversible disease. As alternative therapy for liver transplantation, there  are high expectations for regenerative medicine of the liver.

Bone marrow (BM)-  or peripheral blood-derived stem cells, including endothelial progenitor cells  (EPCs), have recently been used to treat liver cirrhosis. We investigated the  biology of BM-derived EPC in a mouse model of LF. C57BL/6J mice were  subcutaneously injected with carbon tetrachloride (CCl4)  every 3 days for 90 days. Sacrificed 2 days after final injection, whole blood  (WB) was collected for isolation of mononuclear cells (MNCs) and biochemical  examination.

Assessments of EPC in the peripheral blood and BM were performed by  flow cytometry and EPC colonyforming assay, respectively, using purified MNCs  and BM c-KIT+, Sca-1+, and  Lin- (KSL) cells.

Liver tissues underwent histological  analysis with hematoxylin/eosin/Azan staining, and spleens were excised and  weighed. CCl4-treated mice exhibited histologically  bridging fibrosis, pseudolobular formation, and splenomegaly, indicating  successful induction of LF.

The frequency of definitive EPC-colony-forming-units  (CFU) as well as total EPC-CFU at the equivalent cell number of 500 BM-KSL cells  decreased significantly (p < 0.0001) in LF mice compared with control mice;  no significant changes in primitive EPC-CFU occurred in LF mice.

The frequency  of WB-MNCs of definitive EPC-CFU decreased significantly (p < 0.01) in LF  mice compared with control mice. Together, these findings indicated the  existence of impaired EPC function and differentiation in BM-derived EPCs in LF  mice and might be related to clinical LF.

PMID: 21572251 [PubMed - in process]

Related Articles Stem-like plasticity and heterogeneity of circulating tumor cells: current status and prospect challenges in liver cancer. Oncotarget. 2017 Jan 24;8(4):7094-7115 Authors: Correnti M, Raggi C Abstract Poor prognosis and high recurrence remain leading causes of primary liver cancer-associated mortality. The spread of circulating tumor cells (CTCs) in the blood plays a major role in the initiation of metastasis and tumor recurrence after surgery. Nevertheless, only a subset of CTCs can survive, migrate to distant sites and establish secondary tumors. Consistent with cancer stem cell (CSC) hypothesis, stem-like CTCs might represent a potential source for cancer relapse and distant metastasis. Thus, identification of stem-like metastasis-initiating CTC-subset may provide useful clinically prognostic information. This review will emphasize the most relevant findings of CTCs in the context of stem-like biology associated to liver carcinogenesis. In this view, the emerging field of stem-like CTCs may deliver substantial contribution in liver cancer field in order to move to personalized approaches for diagnosis, prognosis and therapy. PMID: 27738343 [PubMed - indexed for MEDLINE]
Related Articles WM130 preferentially inhibits hepatic cancer stem-like cells by suppressing AKT/GSK3β/β-catenin signaling pathway. Oncotarget. 2016 Nov 29;7(48):79544-79556 Authors: Ni CX, Qi Y, Zhang J, Liu Y, Xu WH, Xu J, Hu HG, Wu QY, Wang Y, Zhang JP Abstract The eradication of cancer stem cells (CSCs) is significant for cancer therapy and prevention. In this study, we evaluated WM130, a novel derivative of matrine, for its effect on CSCs using human hepatocellular carcinoma (HCC) cell lines, their sphere cells, and sorted EpCAM+ cells. We revealed that WM130 could not only inhibit proliferation and colony formation of HCC cells, but also suppress the expression of some stemness-related genes and up-regulate some mature hepatocyte marker genes, indicating a promotion of differentiation from CSCs to hepatocytes. WM130 also suppressed the proliferation of doxorubicin-resistant hepatoma cells, and markedly reduced the cells with CSC biomarker EpCAM. Moreover, WM130 suppressed HCC spheres, not only primary spheres but also subsequent spheres, indicating an inhibitory effect on self-renewal capability of CSCs. Interestingly, WM130 exhibited a remarkable inhibitory preference on HCC spheres and EpCAM+ cells rather than their parental HCC cells and EpCAM- cells respectively. In vivo, WM130 inhibited HCC xenograft growth, decreased the number of sphere-forming cells, and remarkably decreased the levels of EpCAM mRNA and protein in tumor xenografts. Better inhibitory effect was achieved by WM130 in combination with doxorubicin. Further mechanism study revealed that WM130 inhibited AKT/GSK3β/β-catenin signaling pathway. Collectively, our results suggest that WM130 remarkably inhibits hepatic CSCs, and this effect may via the down-regulation of the AKT/GSK3β/β-catenin pathway. These findings provide a strong rationale for the use of WM130 as a novel drug candidate in HCC therapy. PMID: 27783993 [PubMed - indexed for MEDLINE]
Related Articles MBD3 inhibits formation of liver cancer stem cells. Oncotarget. 2017 Jan 24;8(4):6067-6078 Authors: Li R, He Q, Han S, Zhang M, Liu J, Su M, Wei S, Wang X, Shen L Abstract Liver cancer cells can be reprogrammed into induced cancer stem cells (iCSCs) by exogenous expression of the reprogramming transcription factors Oct4, Sox2, Klf4 and c-Myc (OSKM). The nucleosome remodeling and deacetylase (NuRD) complex is essential for reprogramming somatic cells. In this study, we investigated the function of NuRD in the induction of liver CSCs. We showed that suppression of methyl-CpG binding domain protein 3 (MBD3), a core subunit of the NuRD repressor complex, together with OSKM transduction, induces conversion of liver cancer cells into stem-like cells. Expression of the transcription factor c-JUN is increased in MBD3-depleted iCSCs, and c-JUN activates endogenous pluripotent genes and regulates iCSC-related genes. These results indicate that MBD3/NuRD inhibits the induction of iCSCs, while c-JUN facilitates the generation of CSC-like properties. The iCSC reprogramming approach devised here provides a novel platform for dissection of the disordered signaling in liver CSCs. In addition, our results indicate that c-JUN may serve as a potential target for liver cancer therapy. PMID: 27894081 [PubMed - indexed for MEDLINE]
Related Articles Valproic Acid Induces Endocytosis-Mediated Doxorubicin Internalization and Shows Synergistic Cytotoxic Effects in Hepatocellular Carcinoma Cells. Int J Mol Sci. 2017 May 12;18(5): Authors: Saha SK, Yin Y, Kim K, Yang GM, Dayem AA, Choi HY, Cho SG Abstract Valproic acid (VPA), a well-known histone deacetylase (HDAC) inhibitor, is used as an anti-cancer drug for various cancers, but the synergistic anti-cancer effect of VPA and doxorubicin (DOX) combination treatment and its potential underlying mechanism in hepatocellular carcinoma (HCC) remain to be elucidated. Here, we evaluate the mono- and combination-therapy effects of VPA and DOX in HCC and identify a specific and efficient, synergistic anti-proliferative effect of the VPA and DOX combination in HCC cells, especially HepG2 cells; this effect was not apparent in MIHA cells, a normal hepatocyte cell line. The calculation of the coefficient of drug interaction confirmed the significant synergistic effect of the combination treatment. Concurrently, the synergistic apoptotic cell death caused by the VPA and DOX combination treatment was confirmed by Hoechst nuclear staining and Western blot analysis of caspase-3 and poly (ADP-ribose) polymerase (PARP) activation. Co-treatment with VPA and DOX enhanced reactive oxygen species (ROS) generation and autophagy, which were clearly attenuated by ROS and autophagy inhibitors, respectively. Furthermore, as an indication of the mechanism underlying the synergistic effect, we observed that DOX internalization, which was induced in the VPA and DOX combination-treated group, occurred via by the caveolae-mediated endocytosis pathway. Taken together, our study uncovered the potential effect of the VPA and DOX combination treatment with regard to cell death, including induction of cellular ROS, autophagy, and the caveolae-mediated endocytosis pathway. Therefore, these results present novel implications in drug delivery research for the treatment of HCC. PMID: 28498322 [PubMed - indexed for MEDLINE]
Related Articles Identification of keratin 19-positive cancer stem cells associating human hepatocellular carcinoma using CYFRA 21-1. Cancer Med. 2017 Nov;6(11):2531-2540 Authors: Kawai T, Yasuchika K, Ishii T, Katayama H, Yoshitoshi EY, Ogiso S, Minami T, Miyauchi Y, Kojima H, Yamaoka R, Kita S, Yasuda K, Sasaki N, Fukumitsu K, Hatano E, Uemoto S Abstract The current lack of an easily measurable surrogate marker of cancer stem cells (CSCs) prevents the clinical application of CSCs for hepatocellular carcinoma (HCC). We previously reported that keratin 19 (K19) is a novel HCC-CSC marker associated with transforming growth factor beta (TGFβ)/Smad signaling, and that K19+ HCC-CSCs could be a new therapeutic target of TGFβ receptor 1 inhibitor LY2157299. In this study, we examined whether K19+ HCC-CSCs can be tracked using cytokeratin 19 fragment CYFRA 21-1. In 147 HCC patients who underwent curative resection and evaluated K19 expression by immunohistochemistry, preoperative serum CYFRA 21-1 levels were significantly higher in K19+ patients than in K19- patients (P < 0.01). Receiver operating characteristic analyses revealed that serum CYFRA 21-1 was the statistically significant and the most sensitive predictor of tumor K19 expression among preoperative laboratory test values (P < 0.001). In HCC cells encoding with a K19 promoter-driven enhanced green fluorescent protein, fluorescence-activated cell sorting (FACS)-isolated K19+ cells displayed significantly higher levels of supernatant CYFRA 21-1 than K19- cells (P < 0.01). Gain/loss of K19 function experiments confirmed that CYFRA 21-1 levels were regulated by K19 function in HCC cells. Furthermore, CYFRA 21-1 levels reflected the treatment efficacy of LY2157299 in K19+ cells. In conclusion, CYFRA 21-1 can be used to predict K19 expression in HCC, and should thereby aid in the development of novel therapeutic strategies targeting K19+ HCC-CSCs. PMID: 28965351 [PubMed - indexed for MEDLINE]
Related Articles Defibrotide sodium for the treatment of hepatic veno-occlusive disease/sinusoidal obstruction syndrome. Expert Rev Clin Pharmacol. 2018 Feb;11(2):113-124 Authors: Richardson PG, Triplett BM, Ho VT, Chao N, Dignan FL, Maglio M, Mohty M Abstract INTRODUCTION: Hepatic veno-occlusive disease/sinusoidal obstruction syndrome (VOD/SOS) is an unpredictable condition associated with endothelial-cell damage due to conditioning for hematopoietic stem-cell transplantation (HSCT) or chemotherapy without HSCT. Mortality in patients with VOD/SOS and multi-organ dysfunction (MOD) may be >80%. Areas covered: Defibrotide is the only approved drug for the treatment of severe hepatic VOD/SOS after HSCT in the European Union and hepatic VOD/SOS with renal or pulmonary dysfunction in the United States. Its efficacy in patients with VOD/SOS with MOD post-HSCT was demonstrated in a clinical-trial program that included a historically controlled treatment study, a phase 2 trial, and a large T-IND expanded-access program that also included patients without MOD and who received chemotherapy without HSCT. Expert commentary: Defibrotide appears to protect endothelial cells and restore the thrombolytic-fibrinolytic balance. It addresses a significant clinical need and has demonstrated favorable Day +100 survival and overall adverse-event rates that seem similar to control groups receiving supportive care alone. Currently, defibrotide is under investigation for the prevention of VOD/SOS in high-risk pediatric and adult patients. PMID: 29301447 [PubMed - indexed for MEDLINE]
Related Articles Hematopoietic stem cells from induced pluripotent stem cells - considering the role of microRNA as a cell differentiation regulator. J Cell Sci. 2018 Feb 21;131(4): Authors: Ferreira AF, Calin GA, Picanço-Castro V, Kashima S, Covas DT, de Castro FA Abstract Although hematopoietic stem cell (HSC) therapy for hematological diseases can lead to a good outcome from the clinical point of view, the limited number of ideal donors, the comorbidity of patients and the increasing number of elderly patients may limit the application of this therapy. HSCs can be generated from induced pluripotent stem cells (iPSCs), which requires the understanding of the bone marrow and liver niches components and function in vivo iPSCs have been extensively applied in several studies involving disease models, drug screening and cellular replacement therapies. However, the somatic reprogramming by transcription factors is a low-efficiency process. Moreover, the reprogramming process is also regulated by microRNAs (miRNAs), which modulate the expression of the transcription factors OCT-4 (also known as POU5F1), SOX-2, KLF-4 and MYC, leading somatic cells to a pluripotent state. In this Review, we present an overview of the challenges of cell reprogramming protocols with regard to HSC generation from iPSCs, and highlight the potential role of miRNAs in cell reprogramming and in the differentiation of induced pluripotent stem cells. PMID: 29467236 [PubMed - in process]

Quick Contact Form