Knee Injuries Stem Cell Treatment

Stem Cells are being used for Knee InjuriesStem Cell Treatment for knee Injury
Acute knee injury causes pain and swelling with problems bending the knee and taking weight. If the swelling occurs immediately, it can suggest a ligament tear or possible fracture.

If the swelling arises over a period of many hours, meniscal or cartilage injuries may be the cause. .

Longer-term symptoms that point to knee problems will include pain and swelling in addition to other complaints. Inflammation in the joint may be caused by even minor activity.

Giving way, or a feeling of instability of the knee, or, popping or grinding in the knee is associated with cartilage or meniscus tears.

"Locking" is the term used when the knee joint refuses to completely straighten, and this is almost always due to torn cartilage. In this situation, the torn piece of cartilage folds upon itself and doesn't allow the knee to extend.

 

 

Meniscus and Stem Cell Therapy

Regeneration of meniscus cartilage in a knee treated with percutaneously implanted Autologous Mesenchymal Stem Cells.

Med Hypotheses. 2008 Dec;71(6):900-8

Authors: Centeno CJ, Busse D, Kisiday J, Keohan C, Freeman M, Karli D

Mesenchymal Stem Cells are pluripotent cells found in multiple human tissues including bone marrow, synovial tissues, and adipose tissues. They have been shown to differentiate into bone, cartilage, muscle, and adipose tissue and represent a possible promising new therapy in regenerative medicine.

Because of their multi-potent capabilities, mesenchymal stem cell (MSC) lineages have been used successfully in animal models to regenerate articular cartilage and in human models to regenerate bone.

The regeneration of articular cartilage via percutaneous introduction of mesenchymal stem cells (MSC's) is a topic of significant scientific and therapeutic interest.

Current treatment for cartilage damage in osteoarthritis focuses on surgical interventions such as arthroscopic debridement, microfracture, and cartilage grafting/transplant. These procedures have proven to be less effective than hoped, are invasive, and often entail a prolonged recovery time.

We hypothesize that autologous mesenchymal stem cells can be harvested from the iliac crest, expanded using the patient's own growth factors from platelet lysate, then successfully implanted to increase cartilage volume in an adult human knee.

We present a review highlighting the developments in cellular and regenerative medicine in the arena mesenchymal stem cell therapy, as well as a case of successful harvest, expansion, and transplant of autologous mesenchymal stem cells into an adult human knee that resulted in an increase in meniscal cartilage volume.

PMID: 18786777 [PubMed - indexed for MEDLINE]

 Stem Cell Therapy and Knee Stem Cell Injection

 

Mesenchymal stem cells for the treatment of neurodegenerative disease.

Regen Med. 2010 Nov;5(6):933-46

Authors: Joyce N, Annett G, Wirthlin L, Olson S, Bauer G, Nolta JA

Mesenchymal stem cells/marrow stromal cells (MSCs) present a promising tool for cell therapy, and are currently being tested in US FDA-approved clinical trials for myocardial infarction, stroke, meniscus injury, limb ischemia, graft-versus-host disease and autoimmune disorders.

They have been extensively tested and proven effective in preclinical studies for these and many other disorders.

There is currently a great deal of interest in the use of MSCs to treat neurodegenerative diseases, in particular for those that are fatal and difficult to treat, such as Huntington's disease and amyotrophic lateral sclerosis.

Proposed regenerative approaches to neurological diseases using MSCs include cell therapies in which cells are delivered via intracerebral or intrathecal injection. Upon transplantation into the brain, MSCs promote endogenous neuronal growth, decrease apoptosis, reduce levels of free radicals, encourage synaptic connection from damaged neurons and regulate inflammation, primarily through paracrine actions. MSCs transplanted into the brain have been demonstrated to promote functional recovery by producing trophic factors that induce survival and regeneration of host neurons.

Therapies will capitalize on the innate trophic support from MSCs or on augmented growth factor support, such as delivering brain-derived neurotrophic factor or glial-derived neurotrophic factor into the brain to support injured neurons, using genetically engineered MSCs as the delivery vehicles. Clinical trials for MSC injection into the CNS to treat traumatic brain injury and stroke are currently ongoing. The current data in support of applying MSC-based cellular therapies to the treatment of neurodegenerative disorders are discussed.

PMID: 21082892 [PubMed - indexed for MEDLINE]

 

Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells.

Pain Physician. 2008 May-Jun;11(3):343-53

Authors: Centeno CJ, Busse D, Kisiday J, Keohan C, Freeman M, Karli D

The ability to repair tissue via percutaneous means may allow interventional pain physicians to manage a wide variety of diseases including peripheral joint injuries and osteoarthritis. This review will highlight the developments in cellular medicine that may soon permit interventional pain management physicians to treat a much wider variety of clinical conditions and highlight an interventional case study using these technologies

PMID: 18523506 [PubMed - indexed for MEDLINE]

 

 

Mesenchymal stem cells for the treatment of neurodegenerative disease.

Regen Med. 2010 Nov;5(6):933-46

Stem Cell Therapy and Knee Injuries

Knee Injuries and Stem Cell Therapy

Authors: Joyce N, Annett G, Wirthlin L, Olson S, Bauer G, Nolta JA

Mesenchymal stem cells/marrow stromal cells (MSCs) present a promising tool for cell therapy, and are currently being tested in US FDA-approved clinical trials for myocardial infarction, stroke, meniscus injury, limb ischemia, graft-versus-host disease and autoimmune disorders.

They have been extensively tested and proven effective in preclinical studies for these and many other disorders. There is currently a great deal of interest in the use of MSCs to treat neurodegenerative diseases, in particular for those that are fatal and difficult to treat, such as Huntington's disease and amyotrophic lateral sclerosis. Proposed regenerative approaches to neurological diseases using MSCs include cell therapies in which cells are delivered via intracerebral or intrathecal injection.

Upon transplantation into the brain, MSCs promote endogenous neuronal growth, decrease apoptosis, reduce levels of free radicals, encourage synaptic connection from damaged neurons and regulate inflammation, primarily through paracrine actions. MSCs transplanted into the brain have been demonstrated to promote functional recovery by producing trophic factors that induce survival and regeneration of host neurons.

Therapies will capitalize on the innate trophic support from MSCs or on augmented growth factor support, such as delivering brain-derived neurotrophic factor or glial-derived neurotrophic factor into the brain to support injured neurons, using genetically engineered MSCs as the delivery vehicles. Clinical trials for MSC injection into the CNS to treat traumatic brain injury and stroke are currently ongoing. The current data in support of applying MSC-based cellular therapies to the treatment of neurodegenerative disorders are discussed.

PMID: 21082892 [PubMed - in process]

Related Articles The effect of adipose-derived mesenchymal stem cells and chondrocytes with platelet-rich fibrin releasates augmentation by intra-articular injection on acute osteochondral defects in a rabbit model. Knee. 2018 Dec;25(6):1181-1191 Authors: Hsu YK, Sheu SY, Wang CY, Chuang MH, Chung PC, Luo YS, Huang JJ, Ohashi F, Akiyoshi H, Kuo TF Abstract BACKGROUND: This study aimed to investigate the efficacy of adipose-derived mesenchymal stem cells (ADSCs), platelet-rich fibrin releasates (PRFr), and chondrocyte transplantation in rabbit acute osteochondral defects. METHODS: Thirty rabbits were randomly assigned to five groups: untreated controls; ADSCs alone; PRFr alone; PRFr + ADSCs; and PRFr + chondrocytes. The critical size osteochondral defects in right knee femoral condyles were injected intra-articularly according to the groups, as listed. The experimental rabbits received treatments once a week for two weeks postoperatively. All evaluations were conducted for 14 weeks following surgery, and the regenerated cartilages were assessed by gross inspection and histological examination. RESULTS: There were no complications encountered in any of the rabbits. The size of the defect decreased and the volume of repaired cartilage increased in the medial femoral condyles of the PRFr + ADSCs group. Relative to the ADSCs or PRFr group, histological examination demonstrated that the PRFr + ADSCs group had thicker hyaline cartilage-specific extracellular matrix. Grading scores revealed that PRFr + ADSCs injection had better matrix, cell distribution, and surface indices than other groups (P < 0.05). However, the histological scores reported for PRFr + chondrocytes on cartilage repair were similar to those of PRFr, and there were no significant between-group differences. CONCLUSIONS: These findings showed that intra-articular injections of PRFr + ADSCs into the knee can reduce cartilage defects by regenerating hyaline-like cartilage without complications. This approach may provide an alternative method for functional reconstruction of acute osteochondral defects with an unlimited source of cells and releasates. PMID: 30420268 [PubMed - indexed for MEDLINE]
Read more...

Quick Contact Form