Knee Injuries Stem Cell Treatment

Stem Cells are being used for Knee InjuriesStem Cell Treatment for knee Injury
Acute knee injury causes pain and swelling with problems bending the knee and taking weight. If the swelling occurs immediately, it can suggest a ligament tear or possible fracture.

If the swelling arises over a period of many hours, meniscal or cartilage injuries may be the cause. .

Longer-term symptoms that point to knee problems will include pain and swelling in addition to other complaints. Inflammation in the joint may be caused by even minor activity.

Giving way, or a feeling of instability of the knee, or, popping or grinding in the knee is associated with cartilage or meniscus tears.

"Locking" is the term used when the knee joint refuses to completely straighten, and this is almost always due to torn cartilage. In this situation, the torn piece of cartilage folds upon itself and doesn't allow the knee to extend.

 

 

Meniscus and Stem Cell Therapy

Regeneration of meniscus cartilage in a knee treated with percutaneously implanted Autologous Mesenchymal Stem Cells.

Med Hypotheses. 2008 Dec;71(6):900-8

Authors: Centeno CJ, Busse D, Kisiday J, Keohan C, Freeman M, Karli D

Mesenchymal Stem Cells are pluripotent cells found in multiple human tissues including bone marrow, synovial tissues, and adipose tissues. They have been shown to differentiate into bone, cartilage, muscle, and adipose tissue and represent a possible promising new therapy in regenerative medicine.

Because of their multi-potent capabilities, mesenchymal stem cell (MSC) lineages have been used successfully in animal models to regenerate articular cartilage and in human models to regenerate bone.

The regeneration of articular cartilage via percutaneous introduction of mesenchymal stem cells (MSC's) is a topic of significant scientific and therapeutic interest.

Current treatment for cartilage damage in osteoarthritis focuses on surgical interventions such as arthroscopic debridement, microfracture, and cartilage grafting/transplant. These procedures have proven to be less effective than hoped, are invasive, and often entail a prolonged recovery time.

We hypothesize that autologous mesenchymal stem cells can be harvested from the iliac crest, expanded using the patient's own growth factors from platelet lysate, then successfully implanted to increase cartilage volume in an adult human knee.

We present a review highlighting the developments in cellular and regenerative medicine in the arena mesenchymal stem cell therapy, as well as a case of successful harvest, expansion, and transplant of autologous mesenchymal stem cells into an adult human knee that resulted in an increase in meniscal cartilage volume.

PMID: 18786777 [PubMed - indexed for MEDLINE]

 Stem Cell Therapy and Knee Stem Cell Injection

 

Mesenchymal stem cells for the treatment of neurodegenerative disease.

Regen Med. 2010 Nov;5(6):933-46

Authors: Joyce N, Annett G, Wirthlin L, Olson S, Bauer G, Nolta JA

Mesenchymal stem cells/marrow stromal cells (MSCs) present a promising tool for cell therapy, and are currently being tested in US FDA-approved clinical trials for myocardial infarction, stroke, meniscus injury, limb ischemia, graft-versus-host disease and autoimmune disorders.

They have been extensively tested and proven effective in preclinical studies for these and many other disorders.

There is currently a great deal of interest in the use of MSCs to treat neurodegenerative diseases, in particular for those that are fatal and difficult to treat, such as Huntington's disease and amyotrophic lateral sclerosis.

Proposed regenerative approaches to neurological diseases using MSCs include cell therapies in which cells are delivered via intracerebral or intrathecal injection. Upon transplantation into the brain, MSCs promote endogenous neuronal growth, decrease apoptosis, reduce levels of free radicals, encourage synaptic connection from damaged neurons and regulate inflammation, primarily through paracrine actions. MSCs transplanted into the brain have been demonstrated to promote functional recovery by producing trophic factors that induce survival and regeneration of host neurons.

Therapies will capitalize on the innate trophic support from MSCs or on augmented growth factor support, such as delivering brain-derived neurotrophic factor or glial-derived neurotrophic factor into the brain to support injured neurons, using genetically engineered MSCs as the delivery vehicles. Clinical trials for MSC injection into the CNS to treat traumatic brain injury and stroke are currently ongoing. The current data in support of applying MSC-based cellular therapies to the treatment of neurodegenerative disorders are discussed.

PMID: 21082892 [PubMed - indexed for MEDLINE]

 

Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells.

Pain Physician. 2008 May-Jun;11(3):343-53

Authors: Centeno CJ, Busse D, Kisiday J, Keohan C, Freeman M, Karli D

The ability to repair tissue via percutaneous means may allow interventional pain physicians to manage a wide variety of diseases including peripheral joint injuries and osteoarthritis. This review will highlight the developments in cellular medicine that may soon permit interventional pain management physicians to treat a much wider variety of clinical conditions and highlight an interventional case study using these technologies

PMID: 18523506 [PubMed - indexed for MEDLINE]

 

 

Mesenchymal stem cells for the treatment of neurodegenerative disease.

Regen Med. 2010 Nov;5(6):933-46

Stem Cell Therapy and Knee Injuries

Knee Injuries and Stem Cell Therapy

Authors: Joyce N, Annett G, Wirthlin L, Olson S, Bauer G, Nolta JA

Mesenchymal stem cells/marrow stromal cells (MSCs) present a promising tool for cell therapy, and are currently being tested in US FDA-approved clinical trials for myocardial infarction, stroke, meniscus injury, limb ischemia, graft-versus-host disease and autoimmune disorders.

They have been extensively tested and proven effective in preclinical studies for these and many other disorders. There is currently a great deal of interest in the use of MSCs to treat neurodegenerative diseases, in particular for those that are fatal and difficult to treat, such as Huntington's disease and amyotrophic lateral sclerosis. Proposed regenerative approaches to neurological diseases using MSCs include cell therapies in which cells are delivered via intracerebral or intrathecal injection.

Upon transplantation into the brain, MSCs promote endogenous neuronal growth, decrease apoptosis, reduce levels of free radicals, encourage synaptic connection from damaged neurons and regulate inflammation, primarily through paracrine actions. MSCs transplanted into the brain have been demonstrated to promote functional recovery by producing trophic factors that induce survival and regeneration of host neurons.

Therapies will capitalize on the innate trophic support from MSCs or on augmented growth factor support, such as delivering brain-derived neurotrophic factor or glial-derived neurotrophic factor into the brain to support injured neurons, using genetically engineered MSCs as the delivery vehicles. Clinical trials for MSC injection into the CNS to treat traumatic brain injury and stroke are currently ongoing. The current data in support of applying MSC-based cellular therapies to the treatment of neurodegenerative disorders are discussed.

PMID: 21082892 [PubMed - in process]

Related Articles The Influence of Ruptured Scar Pattern on the Healing Potential of Anterior Cruciate Ligament Remnant Cells. Am J Sports Med. 2018 05;46(6):1382-1388 Authors: Kirizuki S, Matsumoto T, Ueha T, Uefuji A, Inokuchi T, Takayama K, Hashimoto S, Hayashi S, Matsushita T, Kuroda R Abstract BACKGROUND: Vascular CD34+ cells in anterior cruciate ligament (ACL) tissues have a potential for high proliferation and multilineage differentiation, which can accelerate tendon-bone healing after ACL reconstruction. To predict outcomes of ACL reconstruction with remnant preservation or ruptured tissue incorporation, patient characteristics should be considered. However, the influence of ACL remnant morphologic pattern on healing potential remains unknown. HYPOTHESIS: The healing potential of ACL remnants could differ among their morphologic patterns. STUDY DESIGN: Descriptive laboratory study. METHODS: ACL remnant tissues were harvested from patients aged <35 years who received primary ACL reconstruction within 3 months after injury. The tissues were evaluated according to the Crain classification (4 patterns). The patterns were divided into 2 groups: the reattachment group (Crain I-III) and the nonreattachment group (Crain IV). ACL remnant cells were characterized via fluorescence-activated cell sorting. The potential for proliferation and multilineage differentiation was assessed and compared between the groups. RESULTS: The ratio of CD34+ cells was significantly higher in the nonreattachment group than in the reattachment group. In early passages, the nonreattachment group had a significantly higher expansion potential than the reattachment group. In the evaluation of osteogenic and endothelial differentiation potential, the nonreattachment group showed a higher potential in immunohistochemical/histochemical staining and quantitative real-time polymerase chain reaction analysis as compared with the reattachment group. CONCLUSION: In the subacute phase, ACL remnant tissue of the nonreattachment group possibly has a higher healing potential than that of the reattachment group. CLINICAL RELEVANCE: If healing potential differs among the morphologic patterns of ACL remnants, surgeons may expect the healing potential when preserving remnants. PMID: 29505728 [PubMed - indexed for MEDLINE]
Read more...

Quick Contact Form