Stem Cell Treatments for Huntington's Disease

Stem Cell Treatments for Huntington's Disease are Currently Available at SIRM.

Area of the brain most damaged in early Huntington's disease – striatum (shown in purple)

Stem Cell Treatment for Huntingtons

Huntington's disease (HD) is a neurodegenerative genetic disorder that affects muscle coordination and leads to cognitive decline and dementia. It typically becomes noticeable in middle age. HD is the most common genetic cause of abnormal involuntary writhing movements called chorea, and indeed the disease used to be called Huntington's chorea.

It is much more common in people of Western European descent than in those of Asian or African ancestry. The disease is caused by an autosomal dominant mutation on either of an individual's two copies of a gene called Huntingtin, which means any child of an affected parent has a 50% risk of inheriting the disease. In the rare situations where both parents have an affected copy, the risk increases to 75%, and when either parent has two affected copies, the risk is 100% (all children will be affected). Physical symptoms of Huntington's disease can begin at any age from infancy to old age, but usually begin between 35 and 44 years of age. About 6% of cases start before the age of 21 years with an akinetic-rigid syndrome; they progress faster and vary slightly.

Huntington's Disease treatment studies and stem cell protocols listed below, and at SIRM, we aim to treat Huntington's with Stem Cell Therapy

NIH Streaming Database:

Related Articles Induced Pluripotent Stem Cells in Huntington's Disease Research: Progress and Opportunity. J Huntingtons Dis. 2016 Jun 28;5(2):99-131 Authors: Tousley A, Kegel-Gleason KB Abstract Induced pluripotent stem cells (iPSCs) derived from controls and patients can act as a starting point for in vitro differentiation into human brain cells for discovery of novel targets and treatments for human disease without the same ethical limitations posed by embryonic stem cells. Numerous groups have successfully produced and characterized Huntington's disease (HD) iPSCs with different CAG repeat lengths, including cells from patients with one or two HD alleles. HD iPSCs and the neural cell types derived from them recapitulate some disease phenotypes found in both human patients and animal models. Although these discoveries are encouraging, the use of iPSCs for cutting edge and reproducible research has been limited due to some of the inherent problems with cell lines and the technological differences in the way laboratories use them. The goal of this review is to summarize the current state of the HD iPSC field, and to highlight some of the issues that need to be addressed to maximize their potential as research tools. PMID: 27372054 [PubMed - indexed for MEDLINE]
Related Articles Modern Genome Editing Technologies in Huntington's Disease Research. J Huntingtons Dis. 2017;6(1):19-31 Authors: Malankhanova TB, Malakhova AA, Medvedev SP, Zakian SM Abstract The development of new revolutionary technologies for directed gene editing has made it possible to thoroughly model and study NgAgo human diseases at the cellular and molecular levels. Gene editing tools like ZFN, TALEN, CRISPR-based systems, NgAgo and SGN can introduce different modifications. In gene sequences and regulate gene expression in different types of cells including induced pluripotent stem cells (iPSCs). These tools can be successfully used for Huntington's disease (HD) modeling, for example, to generate isogenic cell lines bearing different numbers of CAG repeats or to correct the mutation causing the disease. This review presents common genome editing technologies and summarizes the progress made in using them in HD and other hereditary diseases. Furthermore, we will discuss prospects and limitations of genome editing in understanding HD pathology. PMID: 28128770 [PubMed - indexed for MEDLINE]
Related Articles Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell. 2017 Oct 05;171(2):273-285 Authors: Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, Noel K, Jiang X, Linkermann A, Murphy ME, Overholtzer M, Oyagi A, Pagnussat GC, Park J, Ran Q, Rosenfeld CS, Salnikow K, Tang D, Torti FM, Torti SV, Toyokuni S, Woerpel KA, Zhang DD Abstract Ferroptosis is a form of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides to lethal levels. Emerging evidence suggests that ferroptosis represents an ancient vulnerability caused by the incorporation of polyunsaturated fatty acids into cellular membranes, and cells have developed complex systems that exploit and defend against this vulnerability in different contexts. The sensitivity to ferroptosis is tightly linked to numerous biological processes, including amino acid, iron, and polyunsaturated fatty acid metabolism, and the biosynthesis of glutathione, phospholipids, NADPH, and coenzyme Q10. Ferroptosis has been implicated in the pathological cell death associated with degenerative diseases (i.e., Alzheimer's, Huntington's, and Parkinson's diseases), carcinogenesis, stroke, intracerebral hemorrhage, traumatic brain injury, ischemia-reperfusion injury, and kidney degeneration in mammals and is also implicated in heat stress in plants. Ferroptosis may also have a tumor-suppressor function that could be harnessed for cancer therapy. This Primer reviews the mechanisms underlying ferroptosis, highlights connections to other areas of biology and medicine, and recommends tools and guidelines for studying this emerging form of regulated cell death. PMID: 28985560 [PubMed - indexed for MEDLINE]

Quick Contact Form