Stem Cell Treatments for Huntington's Disease

Stem Cell Treatments for Huntington's Disease are Currently Available at SIRM.

Area of the brain most damaged in early Huntington's disease – striatum (shown in purple)

Stem Cell Treatment for Huntingtons

Huntington's disease (HD) is a neurodegenerative genetic disorder that affects muscle coordination and leads to cognitive decline and dementia. It typically becomes noticeable in middle age. HD is the most common genetic cause of abnormal involuntary writhing movements called chorea, and indeed the disease used to be called Huntington's chorea.

It is much more common in people of Western European descent than in those of Asian or African ancestry. The disease is caused by an autosomal dominant mutation on either of an individual's two copies of a gene called Huntingtin, which means any child of an affected parent has a 50% risk of inheriting the disease. In the rare situations where both parents have an affected copy, the risk increases to 75%, and when either parent has two affected copies, the risk is 100% (all children will be affected). Physical symptoms of Huntington's disease can begin at any age from infancy to old age, but usually begin between 35 and 44 years of age. About 6% of cases start before the age of 21 years with an akinetic-rigid syndrome; they progress faster and vary slightly.

Huntington's Disease treatment studies and stem cell protocols listed below, and at SIRM, we aim to treat Huntington's with Stem Cell Therapy

NIH Streaming Database:

Related Articles Disruption to schizophrenia-associated gene Fez1 in the hippocampus of HDAC11 knockout mice. Sci Rep. 2017 09 19;7(1):11900 Authors: Bryant DT, Landles C, Papadopoulou AS, Benjamin AC, Duckworth JK, Rosahl T, Benn CL, Bates GP Abstract Histone Deacetylase 11 (HDAC11) is highly expressed in the central nervous system where it has been reported to have roles in neural differentiation. In contrast with previous studies showing nuclear and cytoplasmic localisation, we observed synaptic enrichment of HDAC11. Knockout mouse models for HDACs 1-9 have been important for guiding the development of isoform specific HDAC inhibitors as effective therapeutics. Given the close relationship between HDAC11 and neural cells in vitro, we examined neural tissue in a previously uncharacterised Hdac11 knockout mouse (Hdac11 KO/KO). Loss of HDAC11 had no obvious impact on brain morphology and neural stem/precursor cells isolated from Hdac11 KO/KO mice had comparable proliferation and differentiation characteristics. However, in differentiating neural cells we observed decreased expression of schizophrenia-associated gene Fez1 (fasciculation and elongation protein zeta 1), a gene previously reported to be regulated by HDAC11 activity. FEZ1 has been associated with the dendritic growth of neurons and risk of schizophrenia via its interaction with DISC1 (disrupted in schizophrenia 1). Examination of cortical, cerebellar and hippocampal tissue reveal decreased Fez1 expression specifically in the hippocampus of adult mice. The results of this study demonstrate that loss of HDAC11 has age dependent and brain-region specific consequences. PMID: 28928414 [PubMed - indexed for MEDLINE]
Read more...

Quick Contact Form