Stem Cell Treatment Heart Disease

Stem Cells and Heart Disease

Stem Cell Treatments for Heart Disease is an Option

Cardiovascular diseases remain the biggest cause of deaths worldwide, though over the last two decades, cardiovascular mortality rates have declined in many high-income countries but have increased at an astonishingly fast rate in low- and middle-income countries. The percentage of premature deaths from cardiovascular disease range from 4% in high-income countries to 42% in low-income countries. More than 17 million people died from cardiovascular diseases in 2008. Each year, heart disease kills more Americans than cancer. In recent years, cardiovascular risk in women has been increasing and has killed more women than breast cancer.

Measures to prevent cardiovascular disease may include:

  • Keeping unapposed simple carbohydrates under control, no matter what type: fruit, bread, dairy, etc.
  • decrease emotional stress, or how you react to the environment (traffic, work, deadlines, lifestyle, etc.)
  • a low fat high fiber diet including whole grains and plenty of fresh fruit and vegetables (at least five portions a day)
  • a diet high in complex vegetables and colorful fruit
  • tobacco cessation;
  • limit alcohol consumption;
  • lower blood pressures if elevated through diet and exercise;
  • decrease body fat (BMI);
  • increase daily activity to 30 minutes of any kind of exercise per day at least five times per week

A fairly recent emphasis is on the link between low-grade inflammation that hallmarks atherosclerosis and its possible interventions. C-reactive protein (CRP) is a common inflammatory marker that has been found to be present in increased levels in patients at risk for cardiovascular disease. Also osteoprotegerin which is involved with regulation of a key inflammatory transcription factor called NF-κB has been found to be a risk factor of cardiovascular disease and mortality. Studies have shown that Stem Cells have shown the ability to reduce inflammation.

 

Stem Cell Treatments for Heart Disease is an Option

Streaming NIH Database:

Related Articles A Heart of Stone: Cardiac Fibroblasts Turn to Bone in Calcified Hearts. Cell Stem Cell. 2017 02 02;20(2):151-152 Authors: Ivey KN Abstract The identity of the cells and molecular events driving deleterious calcification of heart muscle remains elusive. In this issue of Cell Stem Cell, Pillai et al. (2017) report that cardiac fibroblasts respond to injury by adopting an osteogenic cell fate and creating damaging calcific deposits, which can be prevented by inhibiting the activated mineralization process. PMID: 28157494 [PubMed - indexed for MEDLINE]
Read more...
Related Articles Personalized genome sequencing coupled with iPSC technology identifies GTDC1 as a gene involved in neurodevelopmental disorders. Hum Mol Genet. 2017 Jan 15;26(2):367-382 Authors: Aksoy I, Utami KH, Winata CL, Hillmer AM, Rouam SL, Briault S, Davila S, Stanton LW, Cacheux V Abstract The cellular and molecular mechanisms underlying neurodevelopmental conditions such as autism spectrum disorders have been studied intensively for decades. The ability to generate patient-specific induced pluripotent stem cells (iPSCs) now offers a novel strategy for modelling human diseases. Recent studies have reported the derivation of iPSCs from patients with neurological disorders. The key challenge remains the demonstration of disease-related phenotypes and the ability to model the disease. Here we report a case study with signs of neurodevelopmental disorders (NDDs) harbouring chromosomal rearrangements that were sequenced using long-insert DNA paired-end tag (DNA-PET) sequencing approach. We identified the disruption of a specific gene, GTDC1. By deriving iPSCs from this patient and differentiating them into neural progenitor cells (NPCs) and neurons we dissected the disease process at the cellular level and observed defects in both NPCs and neuronal cells. We also showed that disruption of GTDC1 expression in wild type human NPCs and neurons showed a similar phenotype as patient's iPSCs. Finally, we utilized a zebrafish model to demonstrate a role for GTDC1 in the development of the central nervous system. Our findings highlight the importance of combining sequencing technologies with the iPSC technology for NDDs modelling that could be applied for personalized medicine. PMID: 28365779 [PubMed - indexed for MEDLINE]
Read more...
Related Articles Recent Advances in Understanding and Managing Cardiomyopathy. F1000Res. 2017;6:1659 Authors: Alvarez P, Tang WW Abstract Cardiomyopathy is a disease of the heart muscle leading to abnormal structure or function in the absence of coronary artery disease, hypertension, or valvular or congenital heart disease. Currently, cardiomyopathy is the leading diagnosis of heart transplant patients worldwide. Incorporation of next-generation sequencing strategies will likely revolutionize genetic testing in cardiomyopathy. The use of patient-specific pluripotent stem cell-derived cardiomyocytes for disease modeling and therapeutic testing has opened a new avenue for precision medicine in cardiomyopathy. Stem cell therapy, gene therapy, interfering RNA, and small molecules are actively being evaluated in clinical trials. PMID: 28928965 [PubMed]
Read more...

Quick Contact Form