Stem Cell Treatment Hearing Loss

Stem Cell Treatment Hearing Loss at SIRM

Two Types:

1. Conductive hearing loss

A conductive hearing impairment is present when the sound is not reaching the inner ear, the cochlea. This can be due to external ear canal malformation, dysfunction of the eardrum or malfunction of the bones of the middle ear. The ear drum may show defects from small to total resulting in hearing loss of different degree. Scar tissue after ear infections may also make the ear drum dysfunction as well as when it is retracted and adherent to the medial part of the middle ear.

Dysfunction of the three small bones of the middle ear; hammer, anvil and stapes may result in conductive hearing loss. The mobility of the ossicles may be impaired of different reasons and disruption of the ossicular chain due to trauma, infection or anchylosis may also result in hearing loss.

2. Sensorineural hearing loss

A sensorineural hearing loss is one resulting from dysfunction of the inner ear, the cochlea, the nerve that transmits the impulses from the cochlea to the hearing centre in the brain or damage in the brain. The most common reason for sensorineural hearing impairment is damage to the hair cells in the cochlea. As we grow older the hair cells degenerate and lose their function, and our hearing deteriorates. Depending on the definition it could be estimated that more than 50% of the population over the age of 70 has an impaired hearing. Impaired hearing is the most common physical handicap in the industrialized world.

Another common reason for hearing loss due to hair cell damage is noise-induced hearing loss. These types of hearing loss are often most pronounced in the high frequency range. This will often interfere with speech understanding, as it is in the high frequency range that we find the consonant sounds that are most important especially in noisy surroundings. Head trauma, ear infections, tumours and ototoxic drugs such as gentamyacin are other reasons for sensorineural hearing loss.

Mixed hearing loss

Mixed hearing loss is a combination of the two types discussed above. Chronic ear infection that is a fairly common diagnosis could result in a defect ear drum and/or middle ear ossicle damages.

Stem Cell Treatment for Hearing Loss

Streaming NIH Database:

Related Articles Synaptic transmission at the endbulb of Held deteriorates during age-related hearing loss. J Physiol. 2017 Feb 01;595(3):919-934 Authors: Xie R, Manis PB Abstract KEY POINTS: Synaptic transmission at the endbulb of Held was assessed by whole-cell patch clamp recordings from auditory neurons in mature (2-4 months) and aged (20-26 months) mice. Synaptic transmission is degraded in aged mice, which may contribute to the decline in neural processing of the central auditory system during age-related hearing loss. The changes in synaptic transmission in aged mice can be partially rescued by improving calcium buffering, or decreasing action potential-evoked calcium influx. These experiments suggest potential mechanisms, such as regulating intraterminal calcium, that could be manipulated to improve the fidelity of transmission at the aged endbulb of Held. ABSTRACT: Age-related hearing loss (ARHL) is associated with changes to the auditory periphery that raise sensory thresholds and alter coding, and is accompanied by alterations in excitatory and inhibitory synaptic transmission, and intrinsic excitability in the circuits of the central auditory system. However, it remains unclear how synaptic transmission changes at the first central auditory synapses during ARHL. Using mature (2-4 months) and old (20-26 months) CBA/CaJ mice, we studied synaptic transmission at the endbulb of Held. Mature and old mice showed no difference in either spontaneous quantal synaptic transmission or low frequency evoked synaptic transmission at the endbulb of Held. However, when challenged with sustained high frequency stimulation, synapses in old mice exhibited increased asynchronous transmitter release and reduced synchronous release. This suggests that the transmission of temporally precise information is degraded at the endbulb during ARHL. Increasing intraterminal calcium buffering with EGTA-AM or decreasing calcium influx with ω-agatoxin IVA decreased the amount of asynchronous release and restored synchronous release in old mice. In addition, recovery from depression following high frequency trains was faster in old mice, but was restored to a normal time course by EGTA-AM treatment. These results suggest that intraterminal calcium in old endbulbs may rise to abnormally high levels during high rates of auditory nerve firing, or that calcium-dependent processes involved in release are altered with age. These observations suggest that ARHL is associated with a decrease in temporal precision of synaptic release at the first central auditory synapse, which may contribute to perceptual deficits in hearing. PMID: 27618790 [PubMed - indexed for MEDLINE]
Read more...

Quick Contact Form