Stroke Stem Cell Treatment


Stem Cell Treatment for StrokeStem Cell Treatment for a Stroke is an option

What is a Stroke?

Stroke and Stem Cell Therapy

A stroke (Cerebrovascular Accident or CVA), is the rapid loss of brain function due to the blood supply to the brain being disturbed. This can be from ischemia from the lack of blood flow or from a blockage known as Thrombosis, an Arterial Embolism, or a Haemorrhage where blood is leaking out or inside the brain.

The affected area of the brain is unable to function correctly and may result in an inability to move especially in one or more limbs on one side of the body. Stroke can also cause an inability to understand speech or speak or see properly. 

A stroke is a medical emergency that needs immediate medical attention. Stroke can cause permanent neurological damage and ongoing complications, and death. It is the a leading cause of adult disability in the around the world.

Risk factors for stroke include ederly people,  high blood pressure (hypertension), a previous stroke or from a transient ischemic attack (TIA).

Other related risk conditions include diabetes, high cholesterol, cigarette smoking and atrial fibrillation. High blood pressure is the most important modifiable risk factor of stroke.

A silent stroke is a stroke that does not have any outward symptoms, and the patient is typically unaware they have suffered a stroke. A silent stroke still causes damage to the brain, and places the person at risk for both transient ischemic attack and a major stroke occuring in the future.

People who have suffered a major stroke are at risk of having silent strokes as well.Stem Cell Treatment for Stroke


Stroke rehabilitation.

Lancet. 2011 May 14;377(9778):1693-702

Authors: Langhorne P, Bernhardt J, Kwakkel G

Stroke is a common, serious, and disabling global health-care problem, and rehabilitation is a major part of patient care. There is evidence to support rehabilitation in well coordinated multidisciplinary stroke units or through provision of early supported provision of discharge teams. Potentially beneficial treatment options for motor recovery of the arm include constraint-induced movement therapy and robotics.

Promising interventions that could be beneficial to improve aspects of gait include fitness training, high-intensity therapy, and repetitive-task training. Repetitive-task training might also improve transfer functions. Occupational therapy can improve activities of daily living; however, information about the clinical effect of various strategies of cognitive rehabilitation and strategies for aphasia and dysarthria is scarce. Several large trials of rehabilitation practice and of novel therapies (eg, stem-cell therapy, repetitive transcranial magnetic stimulation, virtual reality, robotic therapies, and drug augmentation) are underway to inform future practice.

PMID: 21571152 [PubMed - in process]


Stem Cell Treatment for Stroke NIH Streaming Database:

Related Articles Deletion of the von Hippel-Lindau Gene in Hemangioblasts Causes Hemangioblastoma-like Lesions in Murine Retina. Cancer Res. 2018 03 01;78(5):1266-1274 Authors: Wang H, Shepard MJ, Zhang C, Dong L, Walker D, Guedez L, Park S, Wang Y, Chen S, Pang Y, Zhang Q, Gao C, Wong WT, Wiley H, Pacak K, Chew EY, Zhuang Z, Chan CC Abstract von Hippel-Lindau (VHL) disease is an autosomal-dominant tumor predisposition syndrome characterized by the development of highly vascularized tumors and cysts. LOH of the VHL gene results in aberrant upregulation of hypoxia-inducible factors (HIF) and has been associated with tumor formation. Hemangioblastomas of the central nervous system and retina represent the most prevalent VHL-associated tumors, but no VHL animal model has reproduced retinal capillary hemangioblastomas (RCH), the hallmark lesion of ocular VHL. Here we report our work in developing a murine model of VHL-associated RCH by conditionally inactivating Vhl in a hemangioblast population using a Scl-Cre-ERT2 transgenic mouse line. In transgenic mice carrying the conditional allele and the Scl-Cre-ERT2 allele, 64% exhibited various retinal vascular anomalies following tamoxifen induction. Affected Vhl-mutant mice demonstrated retinal vascular lesions associated with prominent vasculature, anomalous capillary networks, hemorrhage, exudates, and localized fibrosis. Histologic analyses showed RCH-like lesions characterized by tortuous, dilated vasculature surrounded by "tumorlet" cell cluster and isolated foamy stromal cells, which are typically associated with RCH. Fluorescein angiography suggested increased vascular permeability of the irregular retinal vasculature and hemangioblastoma-like lesions. Vhl deletion was detected in "tumorlet" cells via microdissection. Our findings provide a phenotypic recapitulation of VHL-associated RCH in a murine model that may be useful to study RCH pathogenesis and therapeutics aimed at treating ocular VHL.Significance: This study describes a model that phenotypically recapitulates a form of retinal pathogenesis that is driven by genetic loss of the VHL tumor suppressor, providing a useful tool for its study and therapeutic intervention. Cancer Res; 78(5); 1266-74. ©2018 AACR. PMID: 29301791 [PubMed - indexed for MEDLINE]

Quick Contact Form