Stroke Stem Cell Treatment

 

Stem Cell Treatment for StrokeStem Cell Treatment for a Stroke is an option

What is a Stroke?

Stroke and Stem Cell Therapy


A stroke (Cerebrovascular Accident or CVA), is the rapid loss of brain function due to the blood supply to the brain being disturbed. This can be from ischemia from the lack of blood flow or from a blockage known as Thrombosis, an Arterial Embolism, or a Haemorrhage where blood is leaking out or inside the brain.

The affected area of the brain is unable to function correctly and may result in an inability to move especially in one or more limbs on one side of the body. Stroke can also cause an inability to understand speech or speak or see properly. 

A stroke is a medical emergency that needs immediate medical attention. Stroke can cause permanent neurological damage and ongoing complications, and death. It is the a leading cause of adult disability in the around the world.

Risk factors for stroke include ederly people,  high blood pressure (hypertension), a previous stroke or from a transient ischemic attack (TIA).

Other related risk conditions include diabetes, high cholesterol, cigarette smoking and atrial fibrillation. High blood pressure is the most important modifiable risk factor of stroke.

A silent stroke is a stroke that does not have any outward symptoms, and the patient is typically unaware they have suffered a stroke. A silent stroke still causes damage to the brain, and places the person at risk for both transient ischemic attack and a major stroke occuring in the future.

People who have suffered a major stroke are at risk of having silent strokes as well.Stem Cell Treatment for Stroke

 

Stroke rehabilitation.

Lancet. 2011 May 14;377(9778):1693-702

Authors: Langhorne P, Bernhardt J, Kwakkel G

Stroke is a common, serious, and disabling global health-care problem, and rehabilitation is a major part of patient care. There is evidence to support rehabilitation in well coordinated multidisciplinary stroke units or through provision of early supported provision of discharge teams. Potentially beneficial treatment options for motor recovery of the arm include constraint-induced movement therapy and robotics.

Promising interventions that could be beneficial to improve aspects of gait include fitness training, high-intensity therapy, and repetitive-task training. Repetitive-task training might also improve transfer functions. Occupational therapy can improve activities of daily living; however, information about the clinical effect of various strategies of cognitive rehabilitation and strategies for aphasia and dysarthria is scarce. Several large trials of rehabilitation practice and of novel therapies (eg, stem-cell therapy, repetitive transcranial magnetic stimulation, virtual reality, robotic therapies, and drug augmentation) are underway to inform future practice.

PMID: 21571152 [PubMed - in process]

 

Stem Cell Treatment for Stroke NIH Streaming Database:

Related Articles Transient focal neurologic deficits upon hematopoietic stem cell transplantation: just a coincidence? Acta Neurol Belg. 2019 Mar;119(1):129-131 Authors: Polymeris AA, Stehle GT, Medinger M, De Marchis GM Abstract PMID: 29043610 [PubMed - indexed for MEDLINE]
Read more...
Adult Neurogenesis in the Subventricular Zone and Its Regulation After Ischemic Stroke: Implications for Therapeutic Approaches. Transl Stroke Res. 2019 Jul 15;: Authors: Dillen Y, Kemps H, Gervois P, Wolfs E, Bronckaers A Abstract Adult neurogenesis in the subventricular zone is a topic of intense research, since it has vast implications for the fundamental understanding of the neurobiology of the brain and its potential to being harnessed for therapy in various neurological disorders. Investigation of adult neurogenesis has been complicated by the difficulties with characterization of neural stem cells in vivo. However, recent single-cell transcriptomic studies provide more detailed information on marker expression in neural stem cells and their neuronal lineage, which hopefully will result in a more unified discussion. Regulation of the multiple biological steps in adult neurogenesis comprises intrinsic mechanisms as well as extrinsic factors which together orchestrate the process. In this review, we describe the regulating factors and their cellular sources in the physiological condition and provide an overview of the regulating factors mediating stroke-induced stimulation of neurogenesis in the subventricular zone. While there is ongoing debate about the longevity of active post-natal neurogenesis in humans, the subventricular zone has the capacity to upregulate neurogenesis in response to ischemic stroke. Though, the stroke-induced neurogenesis in humans does not seem to translate into adequate functional recovery, which opens discussion about potential treatment strategies to harness this neuroregenerative response. Various therapeutic approaches are explored in preclinical and clinical studies to target endogenous neurogenesis of which some are discussed in this review. PMID: 31309427 [PubMed - as supplied by publisher]
Read more...
Drug-like delivery methods of stem cells as biologics for stroke. Expert Opin Drug Deliv. 2019 Jul 16;: Authors: Tuazon JP, Castelli V, Borlongan CV Abstract Introduction: Stem cell therapy is an experimental treatment for brain disorders. Although a cellular product, stem cells can be classified as biologics based on the cells' secretion of therapeutic substances. Treatment with stem cell biologics may appeal to stroke because of the secondary cell death mechanisms, especially neuroinflammation, that are rampant from the onset and remain elevated during the progressive phase of the disease requiring multi-pronged biological targets to effectively abrogate the neurodegenerative pathology. However, the optimal delivery methods, among other logistical approaches (i.e., cell doses and timing of intervention), for stem cell therapy will need to be refined before stem cell biologics can be successfully utilized for stroke in large scale clinical trials. Areas covered: In this review, we discuss how the innate qualities of stem cells characterize them as biologics, how stem cell transplantation may be an ideal treatment for stroke, and the various routes of stem cell administration that have been employed in various preclinical and clinical investigations. Expert opinion: There is a need to optimize the delivery of stem cell biologics for stroke in order to guide the safe and effective translation of this therapy from the laboratory to the clinic. PMID: 31311344 [PubMed - as supplied by publisher]
Read more...

Quick Contact Form