Torn Ligaments and Sports Injuries Stem Cell Treatments


Stem Cells For Torn LigamentsStem Cells for Torn Ligaments and Sports Injuries


Stem cells for tendon tissue engineering and regeneration.

Expert Opin Biol Ther. 2010 May;10(5):689-700

Authors: Yin Z, Chen X, Chen JL, Ouyang HW

Tendon injuries are common especially in sports activities, but tendon is a unique connective tissue with poor self-repair capability. With advances in stem cell biology, tissue engineering is becoming increasingly powerful for tissue regeneration.

Stem cells with capacity of multipotency and self-renewal are an ideal cell source for tissue engineering.

PMID: 20367125 [PubMed - indexed for MEDLINE]


Repair of chronic osteochondral defects using predifferentiated mesenchymal stem cells in an ovine model.

Am J Sports Med. 2010 Sep;38(9):1857-69

Authors: Zscharnack M, Hepp P, Richter R, Aigner T, Schulz R, Somerson J, Josten C, Bader A, Marquass B

The use of mesenchymal stem cells (MSCs) to treat osteochondral defects caused by sports injuries or disease is of particular interest. However, there is a lack of studies in large-animal models examining the benefits of chondrogenic predifferentiation in vitro for repair of chronic osteochondral defects.

Stem Cell Therapy for Sports Injuries

                           Sports Injuries and Stem Cell Therapy


Innovative strategies for treatment

of soft tissue injuries in human and animal athletes.

Med Sport Sci. 2009;54:150-65

Authors: Hoffmann A, Gross G

Our aim is to review the recent progress in the management of musculoskeletal disorders. We will cover novel therapeutic approaches based on growth factors, gene therapy and cells, including stem cells, which may be combined with each other as appropriate.

We focus mainly on the treatment of soft tissue injuries - muscle, cartilage, and tendon/ligament for both human and animal athletes.

The need for innovative strategies results from the fact that despite all efforts, the current strategies for cartilage and tendon/ligament still result in the formation of functionally and biomechanically inferior tissues after injury (a phenomenon called 'repair' as opposed to proper 'regeneration'), whereas the outcome for muscle is more favorable.

Innovative approaches are urgently needed not only to enhance the outcome of conservative or surgical procedures but also to speed up the healing process from the very long disabling periods, which is of special relevance for athletes.


The roles of TGF-beta1 gene transfer on collagen formation during Achilles tendon healing.

Biochem Biophys Res Commun. 2009 May 29;383(2):235-9

Authors: Hou Y, Mao Z, Wei X, Lin L, Chen L, Wang H, Fu X, Zhang J, Yu C

Collagen content and cross-linking are believed to be major determinants of tendon structural integrity and function. The current study aimed to investigate the effects of transforming growth factor (TGF)-beta1 on the collagen content and cross-linking of Achilles tendons, and on the histological and biomechanical changes occurring during Achilles tendon healing in rabbits.

Bone marrow-derived mesenchymal stem cells (BMSCs) transfected with the TGF-beta1 gene were surgically implanted into experimentally injured Achilles tendons. Collagen proteins were identified by immunohistochemical staining and fiber bundle accumulation was revealed by Sirius red staining.

Achilles tendons treated with TGF-beta1-transfected BMSCs showed higher concentrations of collagen I protein, more rapid matrix remodeling, and larger fiber bundles.

Thus TGF-beta1 can promote mechanical strength in healing Achilles tendons by regulating collagen synthesis, cross-link formation, and matrix remodeling.


Mesenchymal stem cell-based therapy for cartilage repair: a review.

Knee Surg Sports Traumatol Arthrosc. 2009 Nov;17(11):1289-97

Authors: Koga H, Engebretsen L, Brinchmann JE, Muneta T, Sekiya I

Articular cartilage injury remains one of the major concerns in orthopaedic surgery. Mesenchymal stem cell (MSC) transplantation has been introduced to avoid some of the side effects and complications of current techniques. The purpose of this paper is to review the literature on MSC-based cell therapy for articular cartilage repair to determine if it can be an alternative treatment for cartilage injury.

MSCs retain both high proliferative potential and multipotentiality, including chondrogenic differentiation potential, and a number of successful results in transplantation of MSCs into cartilage defects have been reported in animal studies. However, the use of MSCs for cartilage repair is still at the stage of preclinical and phase I studies, and no comparative clinical studies have been reported. Therefore, it is difficult to make conclusions in human studies.

This requires randomized clinical trials to evaluate the effectiveness of cell-based cell therapy for cartilage repair.

Related Articles Changes in Transcriptome-Wide Gene Expression of Anterior Cruciate Ligament Tears Based on Time From Injury. Am J Sports Med. 2016 Aug;44(8):2064-75 Authors: Brophy RH, Tycksen ED, Sandell LJ, Rai MF Abstract BACKGROUND: Anterior cruciate ligament (ACL) tears are a common injury. The healing potential of the injured ACL is poorly understood and is considered limited. Therefore, most ACL tears that are treated surgically undergo reconstruction rather than repair. However, there has been renewed interest recently in repairing ACL tears despite unanswered questions regarding the healing capacity of the ACL. HYPOTHESIS: Gene expression in the injured ACL varies with time from injury. STUDY DESIGN: Descriptive laboratory study. METHODS: Transcriptome-wide expression profiles of 24 human ACL remnants recovered at the time of surgical reconstruction were analyzed using the Agilent human 8x60K microarray platform. Gene ontology was performed on differentially expressed transcripts based on time from injury (acute, <3 months; intermediate, 3-12 months; chronic, >12 months). A subset of transcripts with large fold changes in expression between any 2 categories was validated via microfluidic digital polymerase chain reaction. RESULTS: Numerous transcripts representing important biological processes were differentially expressed by time from injury. The most significant changes were noted between the acute and chronic groups. Expression of several extracellular matrix genes- namely, POSTN, COL5A1, COL1A1, and COL12A1-was lower in the chronic tears compared with acute and intermediate tears. In acute tears, processes representing angiogenesis and stem cell differentiation were affected. In intermediate tears, processes representing stem cell proliferation concomitant with cellular component organization/cellular localization were altered. In ACL tears more than 12 months out from injury, processes denoting myosin filament organization, cellular component organization/cell localization, and extracellular matrix organization were affected. CONCLUSION: These findings are consistent with initial repair activity in the injured ACL, which declines with time from injury. Individual genes identified in this study, such as periostin, deserve further investigation into their role in tissue repair. CLINICAL RELEVANCE: The decreased healing capacity of ACL tears over time is relevant to the development of effective techniques for repairing ACL tears and may have some significance for ACL reconstruction techniques as well. The potential for healing appears to be greatest in acute ACL tears, suggesting this window should be the focus of research for ACL repair. PMID: 27159315 [PubMed - indexed for MEDLINE]

Quick Contact Form