Retinitis Pigmentosa Stem Cell Treatment

Stem Cell Treatmtent for Retinitis Pigmentosa

 
stem cell treatment for retinitis pigmentosa

Stem Cell Treatment for Retinitis Pigmentosa

Retinitis Pigmentosa treatments using stem cells is now an option...

Retinitis pigmentosa is a group of genetic eye conditions that leads to incurable blindness. In the progression of symptoms for Retinitis pigmentosa, night blindness generally precedes tunnel vision by years or even decades. Many people with Retinitis pigmentosa do not become legally blind until their 40s or 50s and retain some sight all their lives. Others go completely blind from Retinitis pigmentosa, in some cases as early as childhood. Progression of Retinitis pigmentosa is different in each case.

Retinitis pigmentosa is a type of progressive retinal dystrophy, a group of inherited disorders in which abnormalities of the photoreceptors (rods and cones) or the retinal pigment epithelium of the retina lead to progressive visual loss. Affected individuals first experience defective dark adaptation or nyctalopia (night blindness), followed by reduction of the peripheral visual field (known as tunnel vision) and, sometimes, loss of central vision late in the course of the disease.

At SIRM, our goal is to get you seeing again. Let us help you!

Stem Cell Treatment for Retinitis Pigmentosa

Streaming NIH database and search results:

Related Articles Reprogramming toward anabolism impedes degeneration in a preclinical model of retinitis pigmentosa. Hum Mol Genet. 2016 Aug 11; Authors: Zhang L, Justus S, Xu Y, Pluchenik T, Hsu CW, Yang J, Duong JK, Lin CS, Jia Y, Bassuk AG, Mahajan VB, Tsang SH Abstract Retinitis pigmentosa (RP) is an incurable neurodegenerative condition featuring photoreceptor death that leads to blindness. Currently, there is no approved therapeutic for photoreceptor degenerative conditions like RP and atrophic age-related macular degeneration (AMD). Although there are promising results in human gene therapy, RP is a genetically diverse disorder, such that gene-specific therapies would be practical in a small fraction of RP patients. Here, we explore a non-gene-specific strategy that entails reprogramming photoreceptors towards anabolism by upregulating the mechanistic target of rapamycin (mTOR) pathway. We conditionally ablated Tsc1, an mTOR inhibitor, in the rods of the Pde6b(H620Q/H620Q) preclinical RP mouse model and observed, functionally and morphologically, an improvement in the survival of rods and cones at early and late disease stages. These results elucidate the ability of reprogramming the metabolome to slow photoreceptor degeneration. This strategy may also be applicable to a wider range of neurodegenerative diseases, as enhancement of nutrient uptake is not gene-specific and is implicated in multiple pathologies. Enhancing anabolism promoted neuronal survival and function and could potentially benefit a number of photoreceptor and other degenerative conditions. PMID: 27516389 [PubMed - as supplied by publisher]
Read more...

Quick Contact Form