Retinitis Pigmentosa Stem Cell Treatment

Stem Cell Treatmtent for Retinitis Pigmentosa

 
stem cell treatment for retinitis pigmentosa

Stem Cell Treatment for Retinitis Pigmentosa

Retinitis Pigmentosa treatments using stem cells is now an option...

Retinitis pigmentosa is a group of genetic eye conditions that leads to incurable blindness. In the progression of symptoms for Retinitis pigmentosa, night blindness generally precedes tunnel vision by years or even decades. Many people with Retinitis pigmentosa do not become legally blind until their 40s or 50s and retain some sight all their lives. Others go completely blind from Retinitis pigmentosa, in some cases as early as childhood. Progression of Retinitis pigmentosa is different in each case.

Retinitis pigmentosa is a type of progressive retinal dystrophy, a group of inherited disorders in which abnormalities of the photoreceptors (rods and cones) or the retinal pigment epithelium of the retina lead to progressive visual loss. Affected individuals first experience defective dark adaptation or nyctalopia (night blindness), followed by reduction of the peripheral visual field (known as tunnel vision) and, sometimes, loss of central vision late in the course of the disease.

At SIRM, our goal is to get you seeing again. Let us help you!

Stem Cell Treatment for Retinitis Pigmentosa

Streaming NIH database and search results:

Related Articles Mertk gene expression and photoreceptor outer segment phagocytosis by cultured rat bone marrow mesenchymal stem cells. Mol Vis. 2017;23:8-19 Authors: Peng RM, Hong J, Jin Y, Sun YZ, Sun YQ, Zhang P Abstract BACKGROUND: Bone marrow mesenchymal stem cells (BM-MSCs) are multipotential stem cells that have been used for a broad spectrum of indications. Several investigations have used BM-MSCs to promote photoreceptor survival and suggested that BM-MSCs are a potential source of cell replacement therapy for some forms of retinal degeneration. PURPOSE: To investigate the expression of the MER proto-oncogene, tyrosine kinase (Mertk), involved in the disruption of RPE phagocytosis and the onset of autosomal recessive retinitis pigmentosa in rat BM-MSCs and to compare phagocytosis of the photoreceptor outer segment (POS) by BM-MSCs and RPE cells in vitro. METHODS: MSCs were isolated from the bone marrow of Brown Norway rats. Reverse transcription-PCR (RT-PCR) and western blot analyses were used to examine the expression of Mertk. The phagocytized POS was detected with double fluorescent labeling, transmission electron microscopy, and scanning electron microscopy. RESULTS: Mertk expression did not differ among the first three passages of BM-MSCs. Mertk gene expression was greater in the BM-MSCs than the RPE cells. Mertk protein expression in the BM-MSCs was similar to that in the RPE cells in the primary passage and was greater than that in the RPE cells in the other two passages. BM-MSCs at the first three passages phagocytized the POS more strongly than the RPE cells. The process of BM-MSC phagocytosis was similar to that of the RPE cells. CONCLUSIONS: BM-MSCs may be an effective cell source for treating retinal degeneration in terms of phagocytosis of the POS. PMID: 28210098 [PubMed - in process]
Read more...

Quick Contact Form