Retinitis Pigmentosa Stem Cell Treatment

Stem Cell Treatmtent for Retinitis Pigmentosa

 
stem cell treatment for retinitis pigmentosa

Stem Cell Treatment for Retinitis Pigmentosa

Retinitis Pigmentosa treatments using stem cells is now an option...

Retinitis pigmentosa is a group of genetic eye conditions that leads to incurable blindness. In the progression of symptoms for Retinitis pigmentosa, night blindness generally precedes tunnel vision by years or even decades. Many people with Retinitis pigmentosa do not become legally blind until their 40s or 50s and retain some sight all their lives. Others go completely blind from Retinitis pigmentosa, in some cases as early as childhood. Progression of Retinitis pigmentosa is different in each case.

Retinitis pigmentosa is a type of progressive retinal dystrophy, a group of inherited disorders in which abnormalities of the photoreceptors (rods and cones) or the retinal pigment epithelium of the retina lead to progressive visual loss. Affected individuals first experience defective dark adaptation or nyctalopia (night blindness), followed by reduction of the peripheral visual field (known as tunnel vision) and, sometimes, loss of central vision late in the course of the disease.

At ASCI - Stem Cell Institute, our goal is to get you seeing again. Let us help you!

Stem Cell Treatment for Retinitis Pigmentosa

Streaming NIH database and search results:

Related Articles Interactome analysis reveals that FAM161A, deficient in recessive retinitis pigmentosa, is a component of the Golgi-centrosomal network. Hum Mol Genet. 2015 Mar 5; Authors: Di Gioia SA, Farinelli P, Letteboer SJ, Arsenijevic Y, Sharon D, Roepman R, Rivolta C Abstract Defects in FAM161A, a protein of unknown function localized at the cilium of retinal photoreceptor cells, cause retinitis pigmentosa, a form of hereditary blindness. By using different fragments of this protein as baits to screen cDNA libraries of human and bovine retinas, we defined a yeast two-hybrid-based FAM161A interactome, identifying 53 bona fide partners. In addition to statistically significant enrichment in ciliary proteins, as expected, this interactome revealed substantial bias towards proteins from the Golgi apparatus, the centrosome, and the microtubule network. Validation of interaction with key partners by co-immunoprecipitation and proximity ligation assays confirmed that FAM161A is a member of the recently-recognized Golgi-centrosomal interactome, a network of proteins interconnecting Golgi maintenance, intracellular transport, and centrosome organization. Notable FAM161A interactors included AKAP9, FIP3, GOLGA3, KIFC3, KLC2, PDE4DIP, NIN, and TRIP11. Furthermore, analysis of FAM161A localization during the cell cycle revealed that this protein followed the centrosome during all stages of mitosis, likely reflecting a specific compartmentalization related to its role at the ciliary basal body during the G0 phase. Altogether, these findings suggest that FAM161A's activities are probably not limited to ciliary tasks but also extend to more general cellular functions, highlighting possible novel mechanisms for the molecular pathology of retinal disease. PMID: 25749990 [PubMed - as supplied by publisher]
Read more...

Quick Contact Form