Retinitis Pigmentosa Stem Cell Treatment

Stem Cell Treatmtent for Retinitis Pigmentosa

stem cell treatment for retinitis pigmentosa

Stem Cell Treatment for Retinitis Pigmentosa

Retinitis Pigmentosa treatments using stem cells is now an option...

Retinitis pigmentosa is a group of genetic eye conditions that leads to incurable blindness. In the progression of symptoms for Retinitis pigmentosa, night blindness generally precedes tunnel vision by years or even decades. Many people with Retinitis pigmentosa do not become legally blind until their 40s or 50s and retain some sight all their lives. Others go completely blind from Retinitis pigmentosa, in some cases as early as childhood. Progression of Retinitis pigmentosa is different in each case.

Retinitis pigmentosa is a type of progressive retinal dystrophy, a group of inherited disorders in which abnormalities of the photoreceptors (rods and cones) or the retinal pigment epithelium of the retina lead to progressive visual loss. Affected individuals first experience defective dark adaptation or nyctalopia (night blindness), followed by reduction of the peripheral visual field (known as tunnel vision) and, sometimes, loss of central vision late in the course of the disease.

At SIRM, our goal is to get you seeing again. Let us help you!

Stem Cell Treatment for Retinitis Pigmentosa

Streaming NIH database and search results:

Related Articles Organoid technology for retinal repair. Dev Biol. 2018 01 15;433(2):132-143 Authors: Llonch S, Carido M, Ader M Abstract A major cause for vision impairment and blindness in industrialized countries is the loss of the light-sensing retinal tissue in the eye. Photoreceptor damage is one of the main characteristics found in retinal degeneration diseases, such as Retinitis Pigmentosa or age-related macular degeneration. The lack of effective therapies to stop photoreceptor loss together with the absence of significant intrinsic regeneration in the human retina converts such degenerative diseases into permanent conditions that are currently irreversible. Cell replacement by means of photoreceptor transplantation has been proposed as a potential approach to tackle cell loss in the retina. Since the first attempt of photoreceptor transplantation in humans, about twenty years ago, several research groups have focused in the development and improvement of technologies necessary to bring cell transplantation for retinal degeneration diseases to reality. Progress in recent years in the generation of human tissue derived from pluripotent stem cells (PSCs) has significantly improved our tools to study human development and disease in the dish. Particularly the availability of 3D culture systems for the generation of PSC-derived organoids, including the human retina, has dramatically increased access to human material for basic and medical research. In this review, we focus on important milestones towards the generation of transplantable photoreceptor precursors from PSC-derived retinal organoids and discuss recent pre-clinical transplantation studies using organoid-derived photoreceptors in context to related in vivo work using primary photoreceptors as donor material. Additionally, we summarize remaining challenges for developing photoreceptor transplantation towards clinical application. PMID: 29291970 [PubMed - indexed for MEDLINE]

Quick Contact Form