Retinitis Pigmentosa Stem Cell Treatment

Stem Cell Treatmtent for Retinitis Pigmentosa

 
stem cell treatment for retinitis pigmentosa

Stem Cell Treatment for Retinitis Pigmentosa

Retinitis Pigmentosa treatments using stem cells is now an option...

Retinitis pigmentosa is a group of genetic eye conditions that leads to incurable blindness. In the progression of symptoms for Retinitis pigmentosa, night blindness generally precedes tunnel vision by years or even decades. Many people with Retinitis pigmentosa do not become legally blind until their 40s or 50s and retain some sight all their lives. Others go completely blind from Retinitis pigmentosa, in some cases as early as childhood. Progression of Retinitis pigmentosa is different in each case.

Retinitis pigmentosa is a type of progressive retinal dystrophy, a group of inherited disorders in which abnormalities of the photoreceptors (rods and cones) or the retinal pigment epithelium of the retina lead to progressive visual loss. Affected individuals first experience defective dark adaptation or nyctalopia (night blindness), followed by reduction of the peripheral visual field (known as tunnel vision) and, sometimes, loss of central vision late in the course of the disease.

At ASCI - Stem Cell Institute, our goal is to get you seeing again. Let us help you!

Stem Cell Treatment for Retinitis Pigmentosa

Streaming NIH database and search results:

Related Articles Assessment of different virus-mediated approaches for retinal gene therapy of Usher 1B. Adv Exp Med Biol. 2014;801:725-31 Authors: Lopes VS, Diemer T, Williams DS Abstract Usher syndrome type 1B, which is characterized by congenital deafness and progressive retinal degeneration, is caused by the loss of the function of MYO7A. Prevention of the retinal degeneration should be possible by delivering functional MYO7A to retinal cells. Although this approach has been used successfully in clinical trials for Leber congenital amaurosis (LCA2), it remains a challenge for Usher 1B because of the large size of the MYO7A cDNA. Different viral vectors have been tested for use in MYO7A gene therapy. Here, we review approaches with lentiviruses, which can accommodate larger genes, as well as attempts to use adeno-associated virus (AAV), which has a smaller packaging capacity. In conclusion, both types of viral vector appear to be effective. Despite concerns about the ability of lentiviruses to access the photoreceptor cells, a phenotype of the photoreceptors of Myo7a-mutant mice can be corrected. And although MYO7A cDNA is significantly larger than the nominal carrying capacity of AAV, AAV-MYO7A in single vectors also corrected Myo7a-mutant phenotypes in photoreceptor and RPE cells. Interestingly, however, a dual AAV vector approach was found to be much less effective. PMID: 24664764 [PubMed - indexed for MEDLINE]
Read more...

Quick Contact Form