Pulmonary Fibrosis, Emphysema, COPD Stem Cell Treatment

Stem Cell Therapy Pulmonary Fibrosis

 

Stem Cell Treatment for Pulmonary Fibrosis and COPD are now available at ASCI

Pulmonary fibrosis is the formation or development of excess fibrous connective tissue (fibrosis) in the lungs. It is also described as "scarring of the lung."

Pulmonary fibrosis is suggested by a history of progressive shortness of breath (dyspnea) with exertion. Sometimes fine inspiratory crackles can be heard at the lung bases on auscultation. A chest x-ray may or may not be abnormal, but high Resolution CT will frequently demonstrate abnormalities.

Symptoms

Symptoms of pulmonary fibrosis are mainly:

  • Shortness of breath, particularly with exertion
  • Chronic dry, hacking coughing
  • Fatigue and weakness
  • Chest discomfort
  • Loss of appetite and rapid weight loss

Stem Cell Therapy Pulmonary Fibrosis and COPD

Possible Causes

Pulmonary fibrosis may be a secondary effect of other diseases. Most of these are classified as interstitial lung diseases. Examples include autoimmune disorders, viral infections or other microscopic injuries to the lung. However, pulmonary fibrosis can also appear without any known cause. In this case, it is termed "idiopathic". Most idiopathic cases are diagnosed as idiopathic pulmonary fibrosis. This is a diagnosis of exclusion of a characteristic set of histologic/pathologic features known as usual interstitial pneumonia (UIP). In either case, there is a growing body of evidence which points to a genetic predisposition in a subset of patients. For example, a mutation in Surfactant protein C (SP-C) has been found to exist in some families with a history of pulmonary fibrosis.

Diseases and conditions that may cause pulmonary fibrosis as a secondary effect include:

  • Inhalation of environmental and occupational pollutants, such as in asbestosis, silicosis and exposure to certain gases. Coal miners, ship workers and sand blasters among others are at higher risk. Hypersensitivity pneumonitis, most often resulting from inhaling dust contaminated with bacterial, fungal, or animal products.
  • Cigarette smoking can increase the risk or make the illness worse.
  • Some typical connective tissue diseases such as rheumatoid arthritis and Scleroderma. Other diseases that involve connective tissue, such as sarcoidosis and Wegener's granulomatosis.
  • Infections
  • Certain medications, e.g. amiodarone, bleomycin, busulfan, methotrexate, and nitrofurantoin
  • Radiation therapy to the chest.

Stem Cell Treatments for Pulmonary Fibrosis and COPD. Pulmonary Fibrosis and COPD and Stem Cell studies and protocols from the NIH:

Pulmonary administration of integrin-nanoparticles regenerates collapsed alveoli. J Control Release. 2014 Jun 2;187C:167-174 Authors: Horiguchi M, Kojima H, Sakai H, Kubo H, Yamashita C Abstract Chronic obstructive pulmonary disease (COPD) is an intractable pulmonary disease, causes widespread and irreversible alveoli collapse. In search of a treatment target molecule, which is able to regenerate collapsed alveoli, we sought to identify a factor that induces differentiation in human alveolar epithelial stem cells using all-trans retinoic acid (ATRA), whose alveolar repair capacity has been reported in animal experiments. When human alveolar epithelial stem cells were exposed to ATRA at a concentration of 10μM for over seven days, approximately 20% of the cells differentiated into each of the type-I and type-II alveolar epithelial cells that constitute the alveoli. In a microarray analysis, integrin-α1 and integrin-β3 showed the largest variation in the ATRA-treated group compared with the controls. Furthermore, the effect of the induction of differentiation in human alveolar epithelial stem cells using ATRA was suppressed by approximately one-fourth by siRNA treatments with integrin α1 and integrin β3. These results suggested that integrin α1 and β3 are factors responsible for the induction of differentiation in human alveolar epithelial stem cells. We accordingly investigated whether integrin nanoparticles also had a regenerative effect in vivo. Elastase-induced COPD model mouse was produced, and the alveolar repair effect of pulmonary administration using nanoparticles of integrin protein was evaluated by X-ray CT scanning. Improvement in the CT value in comparison with an untreated group indicated that there was an alveolar repair effect. In this study, it was shown that the differentiation-inducing effect on human alveolar epithelial stem cells by ATRA was induced by increased expression of integrin, and that the induced integrin enhanced phosphorylation signaling of AKT, resulting in inducing differentiations. Furthermore, the study demonstrated that lung administration of nanoparticles with increased solubility and stability of integrin repaired the alveolus of an Elastase-induced COPD model mouse. Those results show that those integrin nanoparticles are effective as novel COPD treatment target compounds. PMID: 24954410 [PubMed - as supplied by publisher]
Read more...

Quick Contact Form