Pulmonary Fibrosis, Emphysema, COPD Stem Cell Treatment

Stem Cell Therapy Pulmonary Fibrosis


Stem Cell Treatment for Pulmonary Fibrosis and COPD are now available at SIRM

Pulmonary fibrosis is the formation or development of excess fibrous connective tissue (fibrosis) in the lungs. It is also described as "scarring of the lung."

Pulmonary fibrosis is suggested by a history of progressive shortness of breath (dyspnea) with exertion. Sometimes fine inspiratory crackles can be heard at the lung bases on auscultation. A chest x-ray may or may not be abnormal, but high Resolution CT will frequently demonstrate abnormalities.


Symptoms of pulmonary fibrosis are mainly:

  • Shortness of breath, particularly with exertion
  • Chronic dry, hacking coughing
  • Fatigue and weakness
  • Chest discomfort
  • Loss of appetite and rapid weight loss

Stem Cell Therapy Pulmonary Fibrosis and COPD

Possible Causes

Pulmonary fibrosis may be a secondary effect of other diseases. Most of these are classified as interstitial lung diseases. Examples include autoimmune disorders, viral infections or other microscopic injuries to the lung. However, pulmonary fibrosis can also appear without any known cause. In this case, it is termed "idiopathic". Most idiopathic cases are diagnosed as idiopathic pulmonary fibrosis. This is a diagnosis of exclusion of a characteristic set of histologic/pathologic features known as usual interstitial pneumonia (UIP). In either case, there is a growing body of evidence which points to a genetic predisposition in a subset of patients. For example, a mutation in Surfactant protein C (SP-C) has been found to exist in some families with a history of pulmonary fibrosis.

Diseases and conditions that may cause pulmonary fibrosis as a secondary effect include:

  • Inhalation of environmental and occupational pollutants, such as in asbestosis, silicosis and exposure to certain gases. Coal miners, ship workers and sand blasters among others are at higher risk. Hypersensitivity pneumonitis, most often resulting from inhaling dust contaminated with bacterial, fungal, or animal products.
  • Cigarette smoking can increase the risk or make the illness worse.
  • Some typical connective tissue diseases such as rheumatoid arthritis and Scleroderma. Other diseases that involve connective tissue, such as sarcoidosis and Wegener's granulomatosis.
  • Infections
  • Certain medications, e.g. amiodarone, bleomycin, busulfan, methotrexate, and nitrofurantoin
  • Radiation therapy to the chest.

Stem Cell Treatments for Pulmonary Fibrosis and COPD. Pulmonary Fibrosis and COPD and Stem Cell studies and protocols from the NIH:

Related Articles Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity. FASEB J. 2016 Dec;30(12):3929-3941 Authors: Chaillou T, Lanner JT Abstract Reduced oxygen (O2) levels (hypoxia) are present during embryogenesis and exposure to altitude and in pathologic conditions. During embryogenesis, myogenic progenitor cells reside in a hypoxic microenvironment, which may regulate their activity. Satellite cells are myogenic progenitor cells localized in a local environment, suggesting that the O2 level could affect their activity during muscle regeneration. In this review, we present the idea that O2 levels regulate myogenesis and muscle regeneration, we elucidate the molecular mechanisms underlying myogenesis and muscle regeneration in hypoxia and depict therapeutic strategies using changes in O2 levels to promote muscle regeneration. Severe hypoxia (≤1% O2) appears detrimental for myogenic differentiation in vitro, whereas a 3-6% O2 level could promote myogenesis. Hypoxia impairs the regenerative capacity of injured muscles. Although it remains to be explored, hypoxia may contribute to the muscle damage observed in patients with pathologies associated with hypoxia (chronic obstructive pulmonary disease, and peripheral arterial disease). Hypoxia affects satellite cell activity and myogenesis through mechanisms dependent and independent of hypoxia-inducible factor-1α. Finally, hyperbaric oxygen therapy and transplantation of hypoxia-conditioned myoblasts are beneficial procedures to enhance muscle regeneration in animals. These therapies may be clinically relevant to treatment of patients with severe muscle damage.-Chaillou, T. Lanner, J. T. Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity. PMID: 27601440 [PubMed - indexed for MEDLINE]

Quick Contact Form