Osteoarthritis Stem Cell Treatment

Stem Cell Treatment and Osteoarthritis at SIRM

What is Osteoarthritis ?

Stem Cell Treatment for Osteoarthritis Knee

Symptoms may include joint pain, tenderness, stiffness, locking, and sometimes an effusion. A variety of causes include hereditary, developmental, metabolic, and mechanical. OA may initiate processes leading to the loss of cartilage.

When bone surfaces become less well protected by cartilage, bone may be exposed and damaged. As a result of decreased movement secondary to pain, regional muscles may atrophy, and ligaments may become more lax.

Human mesenchymal stem cells inhibit osteoclastogenesis through osteoprotegerin production.

Arthritis Rheum. 2011 Jun;63(6):1658-67

Authors: Oshita K, Yamaoka K, Udagawa N, Fukuyo S, Sonomoto K, Maeshima K, Kurihara R, Nakano K, Saito K, Okada Y, Chiba K, Tanaka Y

Mesenchymal stem cells (MSCs) have been proposed to be a useful tool for treatment of rheumatoid arthritis (RA), not only because of their multipotency but also because of their immunosuppressive effect on lymphocytes, dendritic cells, and other proinflammatory cells.

Since bone destruction caused by activated osteoclasts occurs in RA, we undertook the present study to investigate the effect of MSCs on osteoclast function and differentiation in order to evaluate their potential use in RA therapy.

Autologous bone marrow mesenchymal stem cells implantation for cartilage defects: two cases report.

J Med Assoc Thai. 2011 Mar;94(3):395-400

Authors: Kasemkijwattana C, Hongeng S, Kesprayura S, Rungsinaporn V, Chaipinyo K, Chansiri K

The authors reported the results of autologous bone marrow mesenchymal stem cells (BM-MSCs) implantation in two patients with large traumatic cartilage defects of the knee.

Stem Cell Injections for Osteoarthritis

Stem Cell Treatment for Osteoarthritis

Prospects of stem cell therapy in osteoarthritis.

Regen Med. 2011 May;6(3):351-66

Authors: Roberts S, Genever P, McCaskie A, Bari CD

Osteoarthritis is a common disorder in which there is not only extensive degeneration but also an aberrant attempt at repair in joints.

Stem cell therapy could provide a permanent, biological solution, with all sources of stem cells (embryonic, fetal and adult) showing some degree of potential.

Mesenchymal stromal/stem cells, however, appear to be the leading candidates because of their ability to be sourced from many or all joint tissues. They may also modulate the immune response of individuals, in a manner influenced by local factors.

This biological behavior of stem cells renders the application of regulatory standardizations challenging in comparison to pharmaceutical therapies. However, this would not be an issue if endogenous stem cells were activated to effect repair of an arthritic joint.

Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients.

Int J Rheum Dis. 2011 May;14(2):211-5

Authors: Davatchi F, Abdollahi BS, Mohyeddin M, Shahram F, Nikbin B

Background:  Osteoarthritis (OA) is a cartilage degenerative process, involving the immune system, producing local inflammatory reactions, with production of pro-inflammatory cytokines and metalloproteinases. No treatment is still available to improve or reverse the process. Stem cell therapy opened new horizons for treatment of many incurable diseases.

Mesenchymal stem cells (MSCs) due to their multi-lineage potential, immunosuppressive activities, limited immunogenicity and relative ease of growth in culture, have attracted attentions for clinical use. Aim:  The aim of this study was to examine whether MSC transplantation could reverse the OA process in the knee joint.

The project was approved by the Tehran University of Medical Sciences Research Committee and Ethical Committee. Patients and Methods:  Four patients with knee osteoarthritis were selected for the study. They were aged 55, 57, 65 and 54 years, and had moderate to severe knee OA. After their signed written consent, 30 mL of bone marrow were taken and cultured for MSC growth.

After having enough MSCs in culture (4-5 weeks) and taking in consideration all safety measures, cells were injected in one knee of each patient. Results:  The walking time for the pain to appear improved for three patients and remained unchanged for one. The number of stairs they could climb and the pain on visual analog scale improved for all of them. On physical examination, the improvement was mainly for crepitus.

It was minor for the improvement of the range of motion. Conclusion:  Results were encouraging, but not excellent. Improvement of the technique may improve the results.

Telomere length, telomerase activity and osteogenic differentiation are maintained in adipose-derived stromal cells from senile osteoporotic SAMP6 mice.

J Tissue Eng Regen Med. 2011 Jun 28;

Authors: Mirsaidi A, Kleinhans KN, Rimann M, Tiaden AN, Stauber M, Rudolph KL, Richards PJ

Adipose tissue provides for a rich and easily accessible source of multipotent stromal cells and thus offers the potential for autologous cell-based therapy for a number of degenerative diseases. Senile osteoporosis is characterized by a reduction in bone quality, which is associated with inadequacies in bone marrow stromal cell (BMSC) differentiation. In the present study, we have characterized adipose-derived stromal cells (ASCs) isolated from aged osteoporotic mice and evaluated their suitability as a source of osteogenic precursor cells.

Significant reductions in both tibia bone quality and telomere length in liver tissue were observed in the senescence-accelerated mouse prone 6 strain (SAMP6), as compared to the control age-matched senescence-accelerated mouse resistant 1 strain (SAMR1), thus confirming osteoporosis and accelerated ageing traits in this model.

ASCs isolated from inguinal fat expressed mesenchymal surface markers and were capable of differentiating along the osteoblast, adipocyte and chondrocyte lineages. Telomere length was not compromised in ASCs from SAMP6 mice but was actually found to be significantly increased as compared to control SAMR1 mice.

Furthermore, ASCs from both strains were comparable in terms of telomerase activity, p21 mRNA expression, SA-β-gal activity and proliferative capacity. The overall osteogenic and adipogenic potential of ASCs was comparable between SAMP6 and SAMR1 strains, as determined by quantitative molecular, biochemical and histological analyses.

In conclusion, adipose tissue may represent a promising autologous cell source for the development of novel bone regenerative therapeutic strategies in the treatment of age-related osteoporosis. Copyright © 2011 John Wiley & Sons, Ltd.

Stem Cell Treatments for Osteoarthritis Streaming NIH research:

The efficacy of different sources of mesenchymal stem cells for the treatment of knee osteoarthritis. Cell Tissue Res. 2019 Jul 15;: Authors: Maryam S, Jianing S, Wilson SL Abstract Osteoarthritis (OA) is a common cause of chronic pain and disability. Regenerative therapies using mesenchymal stem cells (MSCs) provide an option for OA treatment as it could potentially regenerate the damaged cartilage. Bone marrow, adipose tissue and synovium are common MSC sources. The aim is to compare the therapeutic effect of MSCs from bone marrow, adipose tissue and synovium; combining its differentiation potential and accessibility, to decide the optimal source of MSCs for the treatment of knee OA. A comparison of preclinical and clinical studies using MSCs has been made with regard to treatment outcomes, isolation procedure and differentiation potential. All types of MSCs are effective at improving the clinical and structural condition of OA patients, but the longevity of the treatment, i.e. an effect that is maintained for at least 2 years, cannot be guaranteed. This review highlighted great variations in selection criteria and culture expansion conditions of MSCs between the literature and clinical trials. It also emphasised a substantial diversity and lack of consistency in the assessment mythology of clinical outcome after completion of MSC therapies procedures. A more cohesive methodology is required to evaluate the outcome of MSC treatments using quantitative and standardised frameworks in order to be able to directly compare results. Larger population of patients are recommended to assess the quality of MSC when designing studies and clinical trials to reaffirm the efficacy of MSC treatment prior to and within the clinical trials and follow up studies. PMID: 31309317 [PubMed - as supplied by publisher]
Read more...
Additional Use of Synovial Mesenchymal Stem Cell Transplantation Following Surgical Repair of a Complex Degenerative Tear of the Medial Meniscus of the Knee: A Case Report. Cell Transplant. 2019 Jul 17;:963689719863793 Authors: Sekiya I, Koga H, Otabe K, Nakagawa Y, Katano H, Ozeki N, Mizuno M, Horie M, Kohno Y, Katagiri K, Watanabe N, Muneta T Abstract Complex degenerative tears of the medial meniscus in the knee are usually treated using meniscectomy. However, this procedure increases the risk of osteoarthritis, while other treatments aimed at meniscal repair remain challenging due to the high possibility of failure. The use of synovial mesenchymal stem cells (MSCs) is an attractive additional approach for meniscal repair, as these cells have high proliferative and chondrogenic potential. In this case report, we surgically repaired a complex degenerative tear of the medial meniscus and then transplanted autologous synovial MSCs. We evaluated clinical outcomes at 2 years and assessed adverse events. We enrolled patients with clinical symptoms that included a feeling of instability in addition to pain caused by their complex degenerative tears of the medial meniscus. Two weeks after surgical repair of the torn meniscus, autologous synovial MSCs were transplanted onto the menisci of five patients. The total Lysholm knee score, the Knee Injury and Osteoarthritis Outcome Scale scores for "pain," "daily living," "sports activities," and the Numerical Rating Scale were significantly increased after 2 years. Three adverse events, an increase in c-reactive protein, joint effusion, and localized warmth of the knee were recorded, although these could have been due to the meniscal repair surgery. This first-in-human study confirmed that the combination of surgical repair and synovial MSC transplantation improved the clinical symptoms in patients with a complex degenerative tear of the medial meniscus. No adverse events occurred that necessitated treatment discontinuation. These findings will serve as pilot data for a future prospective study. PMID: 31313604 [PubMed - as supplied by publisher]
Read more...

Quick Contact Form