Optic Nerve Injury Stem Cell Treatment

Stem Cell Treatments for Optic Nerve Injury

Stem Cell Treatmet for Optic Nerve Injuries

Stem Cell Treatment for Optic Nerve Injuries

Optic Nerve Injury Treatments using Stem Cells is now an option...

Via IV and Retrobulbar injections of the patient's own Mesenchymal Stem Cells, we strive to give patients an option where there was none before. The optic nerve is composed of retinal ganglion cell axons and support cells. It leaves the orbit (eye socket) via the optic canal, running postero-medially towards the optic chiasm, where there is a partial decussation (crossing) of fibres from the nasal visual fields of both eyes. The optic nerve is the second of twelve paired cranial nerves but is considered to be part of the central nervous system, as it is derived from an outpouching of the diencephalon during embryonic development. As a consequence, the fibres are covered with myelin produced by oligodendrocytes, rather than Schwann cells, which are found in the peripheral nervous system, and are encased within the meninges.

Damage to the optic nerve typically causes permanent and potentially severe loss of vision, as well as an abnormal pupillary reflex, which is diagnostically important. The type of visual field loss will depend on which portions of the optic nerve were damaged. In general:

  • Damage proximal to the optic chiasm causes loss of vision in the visual field of the same side only.
  • Damage in the chiasm causes loss of vision laterally in both visual fields (bitemporal hemianopia). It may occur in large pituitary adenomata.
  • Damage distal to the chiasm causes loss of vision in one eye but affecting both visual fields: The visual field affected is located on the opposite side of the lesion.

Injury to the optic nerve can be the result of congenital or inheritable problems like Leber's Hereditary Optic Neuropathy, glaucoma, trauma, toxicity, inflammation, ischemia, infection (very rarely), or compression from tumors or aneurysms. By far, the three most common injuries to the optic nerve are from glaucoma, optic neuritis (especially in those younger than 50 years of age), and anterior ischemic optic neuropathy (usually in those older than 50).

  • Glaucoma is a group of diseases involving loss of retinal ganglion cells causing optic neuropathy in a pattern of peripheral vision loss, initially sparing central vision.
  • Optic neuritis is inflammation of the optic nerve. It is associated with a number of diseases, the most notable one being multiple sclerosis.
  • Anterior Ischemic Optic Neuropathy is a particular type of infarct that affects patients with an anatomical predisposition and cardiovascular risk factors.
  • Optic nerve hypoplasia is the under-development of the optic nerve causing little to no vision in the affected eye.

Our goal is to overcome the limitations that Optic Nerve Injuries have placed on our patients using Autologous Stem Cell Therapies.

Stem Cell Treatments for Optic Nerve Injury and Damage

Streaming NIH Search and Results:

Related Articles [Perspectives for the clinical application of the results of current neuromorphological studies of the optical nerve lesions and atrophies]. Morfologiia. 2003;123(3):94-102 Authors: Kudlachev AV, Otellin VA Abstract The review presents the analysis of advances in fundamental studies of the optic nerve regeneration and degeneration mechanisms. It is concluded that current experimental morphological investigations of mechanisms of pathogenesis and sanogenesis of the optic nerve atrophies are developing in several major directions. These include: 1) development of techniques for restoration of the integrity of the optic nerve stem, including those that use peripheral nerve grafts; 2) development of measures to decrease the retinal ganglionic cell (RGC) response to injury and to stimulate RGC repair processes; 3) search for the ways for axon growth stimulation in lesioned and undamaged RGC; 4) usage of RGC apoptosis inhibitors; 5) grafting of embryonic retina. Results of the experimental studies are evaluated in the context of their possible application in clinical practice. PMID: 12942839 [PubMed - indexed for MEDLINE]
Read more...
Related Articles Fate of multipotent neural precursor cells transplanted into mouse retina selectively depleted of retinal ganglion cells. Exp Neurol. 2004 Mar;186(1):6-19 Authors: Mellough CB, Cui Q, Spalding KL, Symons NA, Pollett MA, Snyder EY, Macklis JD, Harvey AR Abstract In some parts of the CNS, depletion of a particular class of neuron might induce changes in the microenvironment that influence the differentiation of newly grafted neural precursor cells. This hypothesis was tested in the retina by inducing apoptotic retinal ganglion cell (RGC) death in neonatal and adult female mice and examining whether intravitreally grafted male neural precursor cells (C17.2), a neural stem cell (NSC)-like clonal line, become incorporated into these selectively depleted retinae. In neonates, rapid RGC death was induced by removal of the contralateral superior colliculus (SC), in adults, delayed RGC death was induced by unilateral optic nerve (ON) transection. Cells were injected intravitreally 6-48 h after SC ablation (neonates) or 0-7 days after ON injury (adults). Cells were also injected into non-RGC depleted neonatal and adult retinae. At 4 or 8 weeks, transplanted cells were identified using a Y-chromosome marker and in situ hybridisation or by their expression of the lacZ reporter gene product Escherichia coli beta-galactosidase (beta-gal). No C17.2 cells were identified in axotomised adult-injected eyes undergoing delayed RGC apoptosis (n = 16). Donor cells were however stably integrated within the retina in 29% (15/55) of mice that received C17.2 cell injections 24 h after neonatal SC ablation; 6-31% of surviving cells were found in the RGC layer (GCL). These NSC-like cells were also present in intact retinae, but on average, there were fewer cells in GCL. In SC-ablated mice, most grafted cells did not express retinal-specific markers, although occasional donor cells in the GCL were immunopositive for beta-III tubulin, a protein highly expressed by, but not specific to, developing RGCs. Targeted rapid RGC depletion thus increased cell incorporation into the GCL, but grafted C17.2 cells did not appear to differentiate into an RGC phenotype. PMID: 14980806 [PubMed - indexed for MEDLINE]
Read more...
Related Articles Engrafted chicken neural tube-derived stem cells support the innate propensity for axonal regeneration within the rat optic nerve. Invest Ophthalmol Vis Sci. 2008 Aug;49(8):3513-24 Authors: Charalambous P, Hurst LA, Thanos S Abstract PURPOSE: Injury to the adult optic nerve, caused mechanically or by diseases, is still not reparable because the retinal ganglion cells (RGCs) are not allowed to regrow their axons and die retrogradely, although they possess the intrinsic propensity to regenerate axons in experimental conditions. METHODS: In vitro propagated embryonic stem cells derived from the early chicken neural tube (NTSCs) were used to examine whether transplanted NTSCs produce growth-promoting factors and pave the microenvironment, thus facilitating axonal regeneration within the rat optic nerve. RESULTS: NTSCs survived within the site where the optic nerve had been cut and continued to be nestin-positive, thus preserving their undifferentiated cell phenotype. Transplanted NTSCs activated the matrix metalloproteases (MMP)-2 and -14 in glial fibrillary acidic protein (GFAP)-positive optic nerve astrocytes. MMP2 production correlated with immunohistochemically visible degradation of inhibitory chondroitin sulfate proteoglycans (CSPGs). In addition, NTSCs produced a panoply of neurite-promoting factors including oncomodulin, ciliary neurotrophic factor, brain-derived neurotrophic factor and crystallins beta and gamma. Cut axons intermingled with NTSCs and passed through the zone of injury to enter the distal optic nerve over long distances, arriving at the thalamus and midbrain. CONCLUSIONS: This study showed evidence that paving of the distal optic nerve microenvironment with proteolytically active MMPs and providing stem-cell-derived growth factors is a suitable method for facilitating regenerative repair of the optic nerve. Understanding the molecular mechanisms of this repair has fundamental implications for development of NTSC-based subsidiary therapy after neural injuries. PMID: 18408190 [PubMed - indexed for MEDLINE]
Read more...
Related Articles Bone marrow-derived mesenchymal stem cell transplantation does not improve quality of muscle reinnervation or recovery of motor function after facial nerve transection in rats. Biol Chem. 2008 Jul;389(7):873-88 Authors: Grosheva M, Guntinas-Lichius O, Arnhold S, Skouras E, Kuerten S, Streppel M, Angelova SK, Wewetzer K, Radtke C, Dunlop SA, Angelov DN Abstract Recently, we devised and validated a novel strategy in rats to improve the outcome of facial nerve reconstruction by daily manual stimulation of the target muscles. The treatment resulted in full recovery of facial movements (whisking), which was achieved by reducing the proportion of pathologically polyinnervated motor endplates. Here, we posed whether manual stimulation could also be beneficial after a surgical procedure potentially useful for treatment of large peripheral nerve defects, i.e., entubulation of the transected facial nerve in a conduit filled with suspension of isogeneic bone marrow-derived mesenchymal stem cells (BM-MSCs) in collagen. Compared to control treatment with collagen only, entubulation with BM-MSCs failed to decrease the extent of collateral axonal branching at the lesion site and did not improve functional recovery. Post-operative manual stimulation of vibrissal muscles also failed to promote a better recovery following entubulation with BM-MSCs. We suggest that BM-MSCs promote excessive trophic support for regenerating axons which, in turn, results in excessive collateral branching at the lesion site and extensive polyinnervation of the motor endplates. Furthermore, such deleterious effects cannot be overridden by manual stimulation. We conclude that entubulation with BM-MSCs is not beneficial for facial nerve repair. PMID: 18627308 [PubMed - indexed for MEDLINE]
Read more...
Related Articles [Glaucoma neuroprotection--how far is it from a dream to reality]. Zhonghua Yan Ke Za Zhi. 2008 May;44(5):385-7 Authors: Ge J Abstract Although the drugs, such as Memantine, Calpain, Erythropoietin, have demonstrated exciting results for neuroprotection in laboratories, the phase III clinical trial of Memantine failed to prove such activity. So far, none of neuroprotection drugs has been approved by FDA for clinical use with the failure of Memantine clinical trail indicating that the gap between basic science research and clinical application in glaucomatous optic neuroprotection remains to be filled. This paper offers a new insight into the field of neuroprotection in glaucoma. To make the dream of optic neuroprotection to reality, we have to implement new perspective strategies to integrate technologies and findings from the researches of human genomics, proteomics, stem cells, and gene-transferred animal models. PMID: 18953889 [PubMed - indexed for MEDLINE]
Read more...
Related Articles Umbilical cord blood mesenchymal stromal cells are neuroprotective and promote regeneration in a rat optic tract model. Exp Neurol. 2009 Apr;216(2):439-48 Authors: Zwart I, Hill AJ, Al-Allaf F, Shah M, Girdlestone J, Sanusi AB, Mehmet H, Navarrete R, Navarrete C, Jen LS Abstract Exploitation of the ability of stem cells to protect damaged neuronal tissue may be a more viable strategy than cell replacement for repair of the central nervous system (CNS). In this study we assessed the capacity of human umbilical cord blood (hUCB)-derived mesenchymal stromal cells (MSCs) to protect and promote regeneration of axotomised neurons within the rat optic system. The optic tract of neonatal rats was transected at the level of the lateral geniculate nucleus, and MSCs were introduced into the lesion site. MSCs survived well up to 2 weeks after grafting, and did not migrate significantly or differentiate. In the presence of MSC grafts, host axonal processes were found to be present in the lesion site, and there was stimulation of an endogenous neural precursor population. Four weeks after grafting, retrograde tracer experiments demonstrated that grafted MSCs, as well as cells of a human fibroblast line, exerted a neuroprotective effect, rescuing a significant percentage of axotomised retinal ganglion cells (RGCs). Further experiments with retrograde and anterograde tracers strongly indicated that MSCs could also promote re-growth of axotomised RGCs to their target, the superior colliculus (SC). Further analysis showed that hUCB-derived MSCs secreted several immunomodulatory and neurotrophic factors in vitro, including TGFbeta1, CNTF, NT-3 and BDNF, which are likely to play a role in neuroprotection. Our data indicate that hUCB-derived MSCs may be an easily accessible, widely available source of cells that can contribute towards neural repair through rescue and regeneration of injured neurons. PMID: 19320003 [PubMed - indexed for MEDLINE]
Read more...
Related Articles Both systemic and local application of granulocyte-colony stimulating factor (G-CSF) is neuroprotective after retinal ganglion cell axotomy. BMC Neurosci. 2009 May 14;10:49 Authors: Frank T, Schlachetzki JC, Göricke B, Meuer K, Rohde G, Dietz GP, Bähr M, Schneider A, Weishaupt JH Abstract BACKGROUND: The hematopoietic Granulocyte-Colony Stimulating Factor (G-CSF) plays a crucial role in controlling the number of neutrophil progenitor cells. Its function is mediated via the G-CSF receptor, which was recently found to be expressed also in the central nervous system. In addition, G-CSF provided neuroprotection in models of neuronal cell death. Here we used the retinal ganglion cell (RGC) axotomy model to compare effects of local and systemic application of neuroprotective molecules. RESULTS: We found that the G-CSF receptor is robustly expressed by RGCs in vivo and in vitro. We thus evaluated G-CSF as a neuroprotectant for RGCs and found a dose-dependent neuroprotective effect of G-CSF on axotomized RGCs when given subcutaneously. As stem stell mobilization had previously been discussed as a possible contributor to the neuroprotective effects of G-CSF, we compared the local treatment of RGCs by injection of G-CSF into the vitreous body with systemic delivery by subcutaneous application. Both routes of application reduced retinal ganglion cell death to a comparable extent. Moreover, G-CSF enhanced the survival of immunopurified RGCs in vitro. CONCLUSION: We thus show that G-CSF neuroprotection is at least partially independent of potential systemic effects and provide further evidence that the clinically applicable G-CSF could become a treatment option for both neurodegenerative diseases and glaucoma. PMID: 19442279 [PubMed - indexed for MEDLINE]
Read more...
Related Articles Death of axotomized retinal ganglion cells delayed after intraoptic nerve transplantation of olfactory ensheathing cells in adult rats. Cell Transplant. 2010;19(2):159-66 Authors: Wu MM, Fan DG, Tadmori I, Yang H, Furman M, Jiao XY, Young W, Sun D, You SW Abstract Intraorbital transection of the optic nerve (ON) always induces ultimate apoptosis of retinal ganglion cells (RGCs) and consequently irreversible defects of vision function. It was demonstrated that transplanted olfactory ensheathing cells (OECs) in partially injured spinal cord have a distant in vivo neuroprotective effect on descending cortical and brain stem neurons. However, this study gave no answers to the question whether OECs can protect the central sensitive neurons with a closer axonal injury because different neurons respond variously to similar axonal injury and the distance between the neuronal soma and axonal injury site has a definite effect on the severity of neuronal response and apoptosis. In the present study, we investigated the effect of transplanted OECs on RGCs after intraorbital ON transection in adult rats. Green fluorescent protein (GFP)-OECs were injected into the ocular stumps of transected ON and a significantly higher number of surviving RGCs was found together with a consistent marked increase in the mRNA and protein levels of BDNF in the ON stump and retina in the OEC-treated group at 7 days, but not 2 and 14 days, time point when compared to the control group. Our findings suggest that OEC transplantation induces the expression of BDNF in the ocular ON stump and retina and delays the death of axotomized RGCs at a certain survival period. PMID: 20350358 [PubMed - indexed for MEDLINE]
Read more...
Related Articles Intravitreal injections of neurotrophic factors secreting mesenchymal stem cells are neuroprotective in rat eyes following optic nerve transection. Invest Ophthalmol Vis Sci. 2010 Dec;51(12):6394-400 Authors: Levkovitch-Verbin H, Sadan O, Vander S, Rosner M, Barhum Y, Melamed E, Offen D, Melamed S Abstract PURPOSE: To evaluate the neuroprotective effect of intravitreal injections of neurotrophic factors secreting mesenchymal stem cells (NTF-SCs) on the survival of retinal ganglion cells (RGCs) in rat eyes after optic nerve transection (ONT). METHODS: Rat and human bone marrow-derived mesenchymal stem cells (MSCs) were induced to secrete high levels of NTF. The neuroprotective effect from intravitreally injected untreated MSCs or NTF-SCs was compared with that from PBS injections using an ONT model in 146 rats. RGCs were labeled by applying rhodamine dextran to the orbital optic nerve or by injecting Fluorogold into the superior colliculus. Cell- and saline-treated eyes were compared 8 days after ONT. For tracking, MSCs and NTF-SCs were labeled with PKH26 and analyzed at 2 hours and at 10, 17, and 24 days using immunohistochemistry and RT-PCR. RESULTS: Mean RGC survival at 8 days after transection increased significantly after intravitreal injections of human NTF-SCs (69% ± 3%) or of untreated human MSCs (66% ± 5%) versus PBS (46% ± 3%; P = 0.0005 and P = 0.03, respectively). In an additional set of experiments, human NTF-SCs versus PBS were significantly neuroprotective, but bone marrow-derived rat NTF-SCs were not (P = 0.001 and P = 0.1, respectively). Immunohistochemistry demonstrated that human-derived MSCs, human NTF-SCs, and rat-derived NTF-SCs survived at least 24 days after intravitreal injection. CONCLUSIONS: Bone marrow-derived MSCs can deliver NTFs by intravitreal injection and can be neuroprotective after ONT. This approach might be further studied to deliver NTFs by autotransplantation in glaucomatous eyes. PMID: 20926814 [PubMed - indexed for MEDLINE]
Read more...
Related Articles Protective effects of human umbilical cord blood stem cell intravitreal transplantation against optic nerve injury in rats. Graefes Arch Clin Exp Ophthalmol. 2011 Jul;249(7):1021-8 Authors: Zhao T, Li Y, Tang L, Li Y, Fan F, Jiang B Abstract BACKGROUND: The majority of studies addressing traumatic optic neuropathy (TON) have focused on drugs, proteins, cytokines, and various surgical techniques. A recent study reported that transplantation of human umbilical cord blood stem cells (hUCBSCs) achieved therapeutic effects on TON, but the exact effects on optic nerve injury are still unknown, and the mechanisms underlying nerve protection remain poorly understood. METHODS: A total of 135 healthy Sprague-Dawley adult rats were randomly assigned to three groups: sham-surgery, model and transplantation, with 45 rats in each group. TON was induced in the model and transplantation groups via optic nerve crush injury. The crush injury was not performed in the sham-surgery group. Seven days after the injury, 10(6) hUCBSCs were injected into the rat vitreous cavity of transplantation group, and an equal volume of physiological saline was administered to the model and sham-surgery groups. Pathological observation of rat retina tissues was performed by hematoxylin-eosin (H&E) staining at days 3, 7, 14, 21 and 28 post-surgery. The number of retinal ganglion cells (RGCs) and mRNA expression levels of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) were assessed by the Fluorogold (FG) retrograde labeling and reverse transcriptase-polymerase chain reaction (RT-PCR) methods, respectively. RESULTS: The number of labeled RGCs and the expression of BDNF and GDNF mRNA obviously increased, and pathological injury was significantly ameliorated in the transplantation group compared to the model group (P < 0.05). CONCLUSIONS: Via intravitreal transplantation, the hUCBSCs resulted in a significant increase in the survival of the RGCs, and improved pathological changes in the rat retina, following TON. The protective mechanism is correlated with the continuous secretion of BDNF and GDNF in vivo of retina in optic nerve injury rats by the transplanted hUCBSCs. PMID: 21360302 [PubMed - indexed for MEDLINE]
Read more...
Related Articles Effect of human umbilical cord blood stem cells on flash visual evoked potential in traumatic optic neuropathy in rats. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2011 May;36(5):405-10 Authors: Zhu X, Jiang B, Zhang P, Zhou D Abstract OBJECTIVE: To investigate the effect of human umbilical cord blood stem cells on flash visual evoked potentials (F-VEP) of the traumatic optic neuropathy rats. METHODS: Forty-eight Sprague-Dawley rats were randomly divided into an injury group (Group A) and 3 treatment groups (Groups B, C, and D). A traumatic optic neuropathy model was built in Group A, and the rats in Groups B, C, and D were injected with the neurotrophic factor, human umbilical cord blood stem cells, and the mixture of the neurotrophic factor and human umbilical cord blood stem cells, respectively. F-VEP was recorded in both eyes of rats at the 1st h, 1st week, 2nd week, 3rd week, and 4th week after the optic nerve injury. RESULTS: At all time points, there were significant difference in the wave latency and amplitude between Group A and normal control eyes (P<0.01). The differences of the wave latency and amplitude between Group A and Groups B, C, and D were statistically significant at various time points after the injury except for the wave latency at the 1st h post-operation (P<0.05). The amplitude in Group D was higher while the latency was shorter than those of Group B at all time points since the 1st week (P<0.05). The comparisons at the same point in the remaining treatment groups were not significantly different (P<0.05). CONCLUSION: The mixture of human umbilical cord blood stem cells and neurotrophic factor has a promotion effect for the recovery of F-VEP of optic nerve in traumatic optic neuropathy in rats to some degrees. PMID: 21685695 [PubMed - indexed for MEDLINE]
Read more...
Related Articles Primitive stem cells derived from bone marrow express glial and neuronal markers and support revascularization in injured retina exposed to ischemic and mechanical damage. Stem Cells Dev. 2012 Jun 10;21(9):1488-500 Authors: Goldenberg-Cohen N, Avraham-Lubin BC, Sadikov T, Goldstein RS, Askenasy N Abstract Ischemic or mechanical injury to the optic nerve is an irreversible cause of vision loss, associated with limited regeneration and poor response to neuroprotective agents. The aim of this study was to assess the capacity of adult bone marrow cells to participate in retinal regeneration following the induction of anterior ischemic optic neuropathy (AION) and optic nerve crush (ONC) in a rodent model. The small-sized subset of cells isolated by elutriation and lineage depletion (Fr25lin(-)) was found to be negative for the neuroglial markers nestin and glial fibrillary acidic protein (GFAP). Syngeneic donor cells, identified by genomic marker in sex-mismatched transplants and green fluorescent protein, incorporated into the injured retina (AION and ONC) at a frequency of 0.35%-0.45% after intravenous infusion and 1.8%-2% after intravitreous implantation. Perivascular cells with astrocytic morphology expressing GFAP and vimentin were of the predominant lineage that engrafted after AION injury; 10%-18% of the donor cells incorporated in the retinal ganglion cell layer and expressed NeuN, Thy-1, neurofilament, and beta-tubulin III. The Fr25lin(-) cells displayed an excellent capacity to migrate to sites of tissue disruption and developed coordinated site-specific morphological and phenotypic neural and glial markers. In addition to cellular reconstitution of the injured retinal layers, these cells contributed to endothelial revascularization and apparently supported remodeling by secretion of insulin-like growth factor-1. These results suggest that elutriated autologous adult bone marrow-derived stem cells may serve as an accessible source for cellular reconstitution of the retina following injury. PMID: 21905921 [PubMed - indexed for MEDLINE]
Read more...
Related Articles Soluble adenylyl cyclase activity is necessary for retinal ganglion cell survival and axon growth. J Neurosci. 2012 May 30;32(22):7734-44 Authors: Corredor RG, Trakhtenberg EF, Pita-Thomas W, Jin X, Hu Y, Goldberg JL Abstract cAMP is a critical second messenger mediating activity-dependent neuronal survival and neurite growth. We investigated the expression and function of the soluble adenylyl cyclase (sAC, ADCY10) in CNS retinal ganglion cells (RGCs). We found sAC protein expressed in multiple RGC compartments including the nucleus, cytoplasm and axons. sAC activation increased cAMP above the level seen with transmembrane adenylate cyclase (tmAC) activation. Electrical activity and bicarbonate, both physiologic sAC activators, significantly increased survival and axon growth, whereas pharmacologic or siRNA-mediated sAC inhibition dramatically decreased RGC survival and axon growth in vitro, and survival in vivo. Conversely, RGC survival and axon growth were unaltered in RGCs from AC1/AC8 double knock-out mice or after specifically inhibiting tmACs. These data identify a novel sAC-mediated cAMP signaling pathway regulating RGC survival and axon growth, and suggest new neuroprotective or regenerative strategies based on sAC modulation. PMID: 22649251 [PubMed - indexed for MEDLINE]
Read more...
Related Articles [Neurogenesis in the central nervous system and prospects of regenerative neurology]. Zh Nevrol Psikhiatr Im S S Korsakova. 2012;112(1):4-13 Authors: Iarygin KN, Iarygin VN Abstract Discovery of neural stem cells (NSC) providing homeostatic adaptive and injury induced neural regeneration in the CNS of adult mammals, including Homo sapiens, is the most prominent accomplishment over the recent period of neurobiology research. NSC are concentrated in two neurogenic zones - side walls of lateral ventricle (subventricular zone) and hippocampal dentate gyrus (subgranular zone). In addition, new neurons may develop from other undifferentiated cells scattered throughout various CNS regions. Neurogenesis in adult mammals is an intensive process that leads to renewal of interneuron populations in such brain regions as olfactory bulbs and hippocampus by 5 and more percent per month. Advances in regenerative neurobiology may serve the foundation for the development of totally new technologies of treatment brain and spinal cord, as well as retina and optic nerve injuries and diseases based on the stimulation of reparative neurogenesis, design of conditions permissive for regeneration of nervous and glial cells and growth of nervous fibers, and on blocking factors inhibiting those two former processes. PMID: 22678669 [PubMed - indexed for MEDLINE]
Read more...
Related Articles Hippocampal avoidance with volumetric modulated arc therapy in melanoma brain metastases - the first Australian experience. Radiat Oncol. 2013 Mar 18;8:62 Authors: Awad R, Fogarty G, Hong A, Kelly P, Ng D, Santos D, Haydu L Abstract PURPOSE: Volumetric modulated arc therapy (VMAT) can deliver intensity modulated radiotherapy (IMRT) like dose distributions in a short time; this allows the expansion of IMRT treatments to palliative situations like brain metastases (BMs). VMAT can deliver whole brain radiotherapy (WBRT) with hippocampal avoidance and a simultaneous integrated boost (SIB) to achieve stereotactic radiotherapy (SRT) for BMs. This study is an audit of our experience in the treatment of brain metastases with VMAT in our institution. METHODS AND MATERIALS: Metastases were volumetrically contoured on fused diagnostic gadolinium enhanced T1 weighted MRI/planning CT images. Risk organs included hippocampus, optic nerve, optic chiasm, eye, and brain stem. The hippocampi were contoured manually as one paired organ with assistance from a neuroradiologist. WBRT and SIB were integrated into a single plan. RESULTS: Thirty patients with 73 BMs were treated between March 2010 and February 2012 with VMAT. Mean follow up time was 3.5 months. For 26 patients, BMs arose from primary melanoma and for the remaining four patients from non-small cell lung cancer (n= 2), primary breast cancer, and sarcoma. Mean age was 60 years. The male to female ratio was 2:1. Five patients were treated without hippocampal avoidance (HA) intent. The median WBRT dose was 31 Gy with a median SIB dose for BMs of 50 Gy, given over a median of 15 fractions. Mean values for BMs were as follows: GTV = 6.9 cc, PTV = 13.3 cc, conformity index = 8.6, homogeneity index = 1.06. Mean and maximum hippocampus dose was 20.4 Gy, and 32.4 Gy, respectively, in patients treated with HA intent. Mean VMAT treatment time from beam on to beam off for one fraction was 3.43 minutes, which compared to WBRT time of 1.3 minutes. Twenty out of 25 assessable lesions at the time of analysis were controlled. Treatment was well tolerated; grade 4 toxicity was reported in one patient. The median overall survival was 9.40 months CONCLUSIONS: VMAT for BMs is feasible, safe and associated with a similar survival times and toxicities to conventional SRT+/-WBRT. The advantage of VMAT is that WBRT and SRT can be delivered at the same time on one machine. PMID: 23497418 [PubMed - indexed for MEDLINE]
Read more...
Related Articles Neural stem cell sparing by linac based intensity modulated stereotactic radiotherapy in intracranial tumors. Radiat Oncol. 2013 Jul 24;8:187 Authors: Oehler J, Brachwitz T, Wendt TG, Banz N, Walther M, Wiezorek T Abstract BACKGROUND: Neurocognitive decline observed after radiotherapy (RT) for brain tumors in long time survivors is attributed to radiation exposure of the hippocampus and the subventricular zone (SVZ). The potential of sparing capabilities for both structures by optimized intensity modulated stereotactic radiotherapy (IMSRT) is investigated. METHODS: Brain tumors were irradiated by stereotactic 3D conformal RT or IMSRT using m3 collimator optimized for PTV and for sparing of the conventional OARs (lens, retina, optic nerve, chiasm, cochlea, brain stem and the medulla oblongata). Retrospectively both hippocampi and SVZ were added to the list of OAR and their dose volume histograms were compared to those from two newly generated IMSRT plans using 7 or 14 beamlets (IMSRT-7, IMSRT-14) dedicated for optimized additional sparing of these structures. Conventional OAR constraints were kept constant. Impact of plan complexity and planning target volume (PTV) topography on sparing of both hippocampi and SVZ, conformity index (CI), the homogeneity index (HI) and quality of coverage (QoC) were analyzed. Limits of agreement were used to compare sparing of stem cell niches with either IMSRT-7 or IMSRT-14. The influence of treatment technique related to the topography ratio between PTV and OARs, realized in group A-D, was assessed by a mixed model. RESULTS: In 47 patients CI (p ≤  0.003) and HI (p  <  0.001) improved by IMSRT-7, IMSRT-14, QoC remained stable (p  ≥  0.50) indicating no compromise in radiotherapy. 90% of normal brain was exposed to a significantly higher dose using IMSRT. IMSRT-7 plans resulted in significantly lower biologically effective doses at all four neural stem cell structures, while contralateral neural stem cells are better spared compared to ipsilateral. A further increase of the number of beamlets (IMSRT-14) did not improve sparing significantly, so IMSRT-7 and IMSRT-14 can be used interchangeable. Patients with tumors contacting neither the subventricular zone nor the cortex benefit most from IMSRT (p  <  0.001). CONCLUSION: The feasibility of neural stem cell niches sparing with sophisticated linac based inverse IMSRT with 7 beamlets in an unselected cohort of intracranial tumors in relation to topographic situation has been demonstrated. Clinical relevance testing neurotoxicity remains to be demonstrated. PMID: 23883368 [PubMed - indexed for MEDLINE]
Read more...
Related Articles The anti-apoptotic and neuro-protective effects of human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) on acute optic nerve injury is transient. Brain Res. 2013 Sep 26;1532:63-75 Authors: Chen M, Xiang Z, Cai J Abstract Progressive death of retinal ganglion cells (RGCs) is a major cause of irreversible visual impairment after optic nerve injury. Clinically, there are still no effective treatments for recovering the visual function at present. The probable approaches to maintain the vision and RGCs function involve in preventing RGCs from death and/or promoting the regeneration of damaged RGCs. Previous studies have shown that mesenchymal stem cells (MSCs) take neuroprotective effects on ischemia-induced cortical and spinal cord injury, however, whether MSCs have a beneficial effect on the optical nerve injury is not clearly determined. In present study, we transplanted MSCs derived from human umbilical cord blood (hUCB-MSCs) into the vitreous cavity of adult rats and investigated the probable capacity of anti-apoptosis and pro-neuroprotective effects on RGCs. RGCs were retrogradely traced by fluorescent gold particles (FG); cellular apoptosis was investigated by caspase-3 immunohistochemistry and terminal dUTP nick end labeling (TUNEL) staining. Hematoxylin-eosin (HE) staining was used to observe the morphological changes of the retina. Growth associated protein 43 (GAP-43), an established marker for axonal regeneration, was used to visualize the regenerative process over time. Expression of P2X7 receptors (P2X7R), which are responsible for inflammatory and immune responses, was also monitored in our experiments. We found that the hUCB-MSC transplantation significantly decreased cellular apoptosis and promoted the survival of RGCs in early phase. However, this protection was transient and the RGCs could not be protected from death in the end. Consistent with apoptosis detection, P2X7R was also significantly decreased in hUCB-MSC transplanted rats in the early time but without obvious difference to the rats from control group in the end. Thus, our results imply that hUCB-MSCs take anti-apoptotic, pro-neuroregenerative and anti-inflammatory effects in the early time for acute optic nerve injury in adult rats but could not prevent RGCs from death eventually. PMID: 23933426 [PubMed - indexed for MEDLINE]
Read more...
Related Articles Intravitreal transplantation of human umbilical cord blood stem cells protects rats from traumatic optic neuropathy. PLoS One. 2013;8(8):e69938 Authors: Jiang B, Zhang P, Zhou D, Zhang J, Xu X, Tang L Abstract OBJECTIVES: To treat traumatic optic neuropathy (TON) with transplantation of human umbilical cord blood stem cells (hUCBSC) and explore how transplanted stem cells participate in the neuron repairing process. METHODS: A total of 195 Sprague-Dawley rats were randomly assigned to three groups: sham-surgery, optic nerve injury, and stem cell transplant group. Optic nerve injury was established in rats by directly clamping the optic nerve for 30 seconds. hUCBSC was microinjected into the vitreous cavity of injured rats. Optic nerve function was evaluated by flash visual evoked potentials (F-VEP). Apoptosis in retina tissues was detected by TUNEL staining. GRP78 and CHOP gene expression was measured by RT-PCR. RESULTS: After injury, transplantation of hUCBSC significantly blunted a reduction in optic nerve function indicated by smaller decreases in amplitude and smaller increases in peak latency of F-VEP waveform compared to the injury alone group. Also, significant more in retinal ganglion cell (RGC) count and less in RGC apoptosis were detected after transplantation compared to injured rats. The protective effect correlated with upregulated GRP78 and downregulated CHOP mRNA expression. CONCLUSION: Intravitreal transplantation of hUCBSCs significantly blunted a reduction in optic nerve function through increasing RGC survival and decreasing retinal cell apoptosis. The protective role of transplantation was associated with upregulation of GRP78 expression and downregulation of CHOP expression in retinal cells. PMID: 23940534 [PubMed - indexed for MEDLINE]
Read more...
Related Articles Engrafted human induced pluripotent stem cell-derived anterior specified neural progenitors protect the rat crushed optic nerve. PLoS One. 2013;8(8):e71855 Authors: Satarian L, Javan M, Kiani S, Hajikaram M, Mirnajafi-Zadeh J, Baharvand H Abstract BACKGROUND: Degeneration of retinal ganglion cells (RGCs) is a common occurrence in several eye diseases. This study examined the functional improvement and protection of host RGCs in addition to the survival, integration and neuronal differentiation capabilities of anterior specified neural progenitors (NPs) following intravitreal transplantation. METHODOLOGY/PRINCIPAL FINDINGS: NPs were produced under defined conditions from human induced pluripotent stem cells (hiPSCs) and transplanted into rats whose optic nerves have been crushed (ONC). hiPSCs were induced to differentiate into anterior specified NPs by the use of Noggin and retinoic acid. The hiPSC-NPs were labeled by green fluorescent protein or a fluorescent tracer 1,1' -dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) and injected two days after induction of ONC in hooded rats. Functional analysis according to visual evoked potential recordings showed significant amplitude recovery in animals transplanted with hiPSC-NPs. Retrograde labeling by an intra-collicular DiI injection showed significantly higher numbers of RGCs and spared axons in ONC rats treated with hiPSC-NPs or their conditioned medium (CM). The analysis of CM of hiPSC-NPs showed the secretion of ciliary neurotrophic factor, basic fibroblast growth factor, and insulin-like growth factor. Optic nerve of cell transplanted groups also had increased GAP43 immunoreactivity and myelin staining by FluoroMyelin™ which imply for protection of axons and myelin. At 60 days post-transplantation hiPSC-NPs were integrated into the ganglion cell layer of the retina and expressed neuronal markers. CONCLUSIONS/SIGNIFICANCE: The transplantation of anterior specified NPs may improve optic nerve injury through neuroprotection and differentiation into neuronal lineages. These NPs possibly provide a promising new therapeutic approach for traumatic optic nerve injuries and loss of RGCs caused by other diseases. PMID: 23977164 [PubMed - indexed for MEDLINE]
Read more...
Related Articles Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury. Invest Ophthalmol Vis Sci. 2013 Nov 15;54(12):7544-56 Authors: Mead B, Logan A, Berry M, Leadbeater W, Scheven BA Abstract PURPOSE: To investigate the potential therapeutic benefit of intravitreally implanted dental pulp stem cells (DPSCs) on axotomized adult rat retinal ganglion cells (RGCs) using in vitro and in vivo neural injury models. METHODS: Conditioned media collected from cultured rat DPSCs and bone marrow-derived mesenchymal stem cells (BMSCs) were assayed for nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) secretion using ELISA. DPSCs or BMSCs were cocultured with retinal cells, with or without Fc-TrK inhibitors, in a Transwell system, and the number of surviving βIII-tubulin⁺ retinal cells and length/number of βIII-tubulin⁺ neurites were quantified. For the in vivo study, DPSCs or BMSCs were transplanted into the vitreous body of the eye after a surgically induced optic nerve crush injury. At 7, 14, and 21 days postlesion (dpl), optical coherence tomography (OCT) was used to measure the retinal nerve fiber layer thickness as a measure of axonal atrophy. At 21 dpl, numbers of Brn-3a⁺ RGCs in parasagittal retinal sections and growth-associated protein-43⁺ axons in longitudinal optic nerve sections were quantified as measures of RGC survival and axon regeneration, respectively. RESULTS: Both DPSCs and BMSCs secreted NGF, BDNF, and NT-3, with DPSCs secreting significantly higher titers of NGF and BDNF than BMSCs. DPSCs, and to a lesser extent BMSCs, promoted statistically significant survival and neuritogenesis/axogenesis of βIII-tubulin⁺ retinal cells in vitro and in vivo where the effects were abolished after TrK receptor blockade. CONCLUSIONS: Intravitreal transplants of DPSCs promoted significant neurotrophin-mediated RGC survival and axon regeneration after optic nerve injury. PMID: 24150755 [PubMed - indexed for MEDLINE]
Read more...
Related Articles Overexpression of Wnt3a facilitates the proliferation and neural differentiation of neural stem cells in vitro and after transplantation into an injured rat retina. J Neurosci Res. 2014 Feb;92(2):148-61 Authors: Yang XT, Bi YY, Chen ET, Feng DF Abstract Neural stem cell-based therapy is a promising option for repair after injury. However, poor stem cell proliferation and insufficient differentiation of the stem cells into neurons are still difficult problems. The present study investigated whether transplantation of neural stem cells (NSCs) genetically modified to express Wnt3a is a promising approach to overcome these difficulties. We explored the possibility that Wnt3a might contribute to the therapeutic effect of NSC transplantation in retinal repair. The relative promotion of proliferation and neural differentiation by modified NSCs was investigated in a rat model of optic nerve crush. A recombinant lentivirus (Lenti-Wnt3a) was engineered to express Wnt3a. NSCs infected with control lentivirus (Lenti-GFP) or Lenti-Wnt3a were transplanted into the subretinal space immediately after the optic nerve crush. The proliferation and neural differentiation activity of the NSCs were assessed in vitro and in vivo. Overexpression of Wnt3a in NSCs induced activation of Wnt signaling, promoted proliferation, and directed the differentiation of the NSCs into neurons both in vitro and in vivo. Our study suggests that Wnt3a can potentiate the therapeutic benefits of NSC-based therapy in the injured retina. PMID: 24254835 [PubMed - indexed for MEDLINE]
Read more...
Related Articles Effect of RSCs combined with COP-1 on optic nerve damage in glaucoma rat model. Asian Pac J Trop Med. 2014 Apr;7(4):317-20 Authors: Fu WC, Jiang Y, Zhang L Abstract OBJECTIVE: To explore effect of retinal stem cells (RSCs) combined with copolymer-1 (COP-1) immunotherapy on optic nerve damage in glaucoma rat model. METHODS: A total of 40 SD rats were selected for glaucoma model and were randomly divided into 4 groups to observe protective effects of RSCs transplantation combined with COP-1. RESULTS: Brain-derived neurotrophic factor (BDNF) and insulin like growth factor-1 (IGF-1) were either positive in retina of RSCs transplanted or COP-1 immunological treated rat. Positive rate of BDNF and IGF-1 and expression of mRNA and protein were significantly higher in RSCs transplantation combined with COP-1 immunotherapy treated rats compared with the other 3 groups, in which amount of apoptotic RGCs was lowest. CONCLUSIONS: RSCs transplantation combined with COP-1 immunotherapy can promote the secretion of BDNF and IGF-1. They protect RGCs in glaucoma rats in coordination, significantly reduce the number of apoptosis RGCs so as to alleviate the optic nerve damage. It ponits a new research direction for treatment of glaucoma. PMID: 24507684 [PubMed - indexed for MEDLINE]
Read more...
Related Articles βB2-Crystallin Promotes Axonal Regeneration in the Injured Optic Nerve in Adult Rats. Cell Transplant. 2015;24(9):1829-44 Authors: Böhm MR, Prokosch V, Brückner M, Pfrommer S, Melkonyan H, Thanos S Abstract The purpose of the study was to further scrutinize the potential of βB2-crystallin in supporting regeneration of injured retinal ganglion cell axons both in vitro and in vivo. Retinal explants obtained from animals after treatment either with lens injury (LI) alone or with combined LI 5 days or 3 days before or simultaneously with an optic nerve crush (ONC) were cultured for 96 h under regenerative conditions, and the regenerating axons were quantified and compared with untreated controls. These measurements were then repeated with LI replaced by intravitreal injections of γ-crystallin and β-crystallin at 5 days before ONC. Finally, βB2-crystallin-overexpressing transfected neural progenitor cells (βB2-crystallin-NPCs) in the eye were studied after crushing the optic nerve in vivo. Regeneration was monitored with the aid of immunoblotting of the retina and optic nerve both distal and proximal to the lesion site, and this was compared with controls that received injections of phosphate buffer only. LI performed 5 days or 3 days before ONC significantly promoted axonal outgrowth in vitro (p < 0.001), while LI performed alone before explantation did not. Intravitreal injections of β-crystallin and γ-crystallin mimicked the effects of LI and significantly increased axonal regeneration in culture at the same time intervals (p < 0.001). Western blot analysis revealed that crystallins were present in the proximal optic nerve stump at the lesion site in ONC, but were neither expressed in the undamaged distal optic nerve nor in uninjured tissue. βB2-crystallin-NPCs supported the regeneration of cut optic nerve axons within the distal optic nerve stump in vivo. The reported data suggest that βB2-crystallin-producing "cell factories" could be used to provide novel therapeutic drugs for central nervous system injuries. PMID: 25299378 [PubMed - indexed for MEDLINE]
Read more...
Related Articles Distribution of mesenchymal stem cells and effects on neuronal survival and axon regeneration after optic nerve crush and cell therapy. PLoS One. 2014;9(10):e110722 Authors: Mesentier-Louro LA, Zaverucha-do-Valle C, da Silva-Junior AJ, Nascimento-Dos-Santos G, Gubert F, de Figueirêdo AB, Torres AL, Paredes BD, Teixeira C, Tovar-Moll F, Mendez-Otero R, Santiago MF Abstract Bone marrow-derived cells have been used in different animal models of neurological diseases. We investigated the therapeutic potential of mesenchymal stem cells (MSC) injected into the vitreous body in a model of optic nerve injury. Adult (3-5 months old) Lister Hooded rats underwent unilateral optic nerve crush followed by injection of MSC or the vehicle into the vitreous body. Before they were injected, MSC were labeled with a fluorescent dye or with superparamagnetic iron oxide nanoparticles, which allowed us to track the cells in vivo by magnetic resonance imaging. Sixteen and 28 days after injury, the survival of retinal ganglion cells was evaluated by assessing the number of Tuj1- or Brn3a-positive cells in flat-mounted retinas, and optic nerve regeneration was investigated after anterograde labeling of the optic axons with cholera toxin B conjugated to Alexa 488. Transplanted MSC remained in the vitreous body and were found in the eye for several weeks. Cell therapy significantly increased the number of Tuj1- and Brn3a-positive cells in the retina and the number of axons distal to the crush site at 16 and 28 days after optic nerve crush, although the RGC number decreased over time. MSC therapy was associated with an increase in the FGF-2 expression in the retinal ganglion cells layer, suggesting a beneficial outcome mediated by trophic factors. Interleukin-1β expression was also increased by MSC transplantation. In summary, MSC protected RGC and stimulated axon regeneration after optic nerve crush. The long period when the transplanted cells remained in the eye may account for the effect observed. However, further studies are needed to overcome eventually undesirable consequences of MSC transplantation and to potentiate the beneficial ones in order to sustain the neuroprotective effect overtime. PMID: 25347773 [PubMed - indexed for MEDLINE]
Read more...
Related Articles Neurotrophic factors for spinal cord repair: Which, where, how and when to apply, and for what period of time? Brain Res. 2015 Sep 04;1619:36-71 Authors: Harvey AR, Lovett SJ, Majda BT, Yoon JH, Wheeler LP, Hodgetts SI Abstract A variety of neurotrophic factors have been used in attempts to improve morphological and behavioural outcomes after experimental spinal cord injury (SCI). Here we review many of these factors, their cellular targets, and their therapeutic impact on spinal cord repair in different, primarily rodent, models of SCI. A majority of studies report favourable outcomes but results are by no means consistent, thus a major aim of this review is to consider how best to apply neurotrophic factors after SCI to optimize their therapeutic potential. In addition to which factors are chosen, many variables need be considered when delivering trophic support, including where and when to apply a given factor or factors, how such factors are administered, at what dose, and for how long. Overall, the majority of studies have applied neurotrophic support in or close to the spinal cord lesion site, in the acute or sub-acute phase (0-14 days post-injury). Far fewer chronic SCI studies have been undertaken. In addition, comparatively fewer studies have administered neurotrophic factors directly to the cell bodies of injured neurons; yet in other instructive rodent models of CNS injury, for example optic nerve crush or transection, therapies are targeted directly at the injured neurons themselves, the retinal ganglion cells. The mode of delivery of neurotrophic factors is also an important variable, whether delivered by acute injection of recombinant proteins, sub-acute or chronic delivery using osmotic minipumps, cell-mediated delivery, delivery using polymer release vehicles or supporting bridges of some sort, or the use of gene therapy to modify neurons, glial cells or precursor/stem cells. Neurotrophic factors are often used in combination with cell or tissue grafts and/or other pharmacotherapeutic agents. Finally, the dose and time-course of delivery of trophic support should ideally be tailored to suit specific biological requirements, whether they relate to neuronal survival, axonal sparing/sprouting, or the long-distance regeneration of axons ending in a different mode of growth associated with terminal arborization and renewed synaptogenesis. This article is part of a Special Issue entitled SI: Spinal cord injury. PMID: 25451132 [PubMed - indexed for MEDLINE]
Read more...
Related Articles Mesenchymal stem cells secrete brain-derived neurotrophic factor and promote retinal ganglion cell survival after traumatic optic neuropathy. J Craniofac Surg. 2015 Mar;26(2):548-52 Authors: Junyi L, Na L, Yan J Abstract OBJECTIVE: The study aimed to investigate whether intravitreal injection of mesenchymal stem cells (MSCs) cultivated in vitro could increase the number of survived retinal ganglion cells (RGCs) after traumatic optic neuropathy and sought to identify potential mechanisms underlying such growth. METHODS: The right eye of 24 cats in the MSC transplantation group accepted intravitreal injection of MSCs, and the other 24 cats in the phosphate buffer (PBS) control group received isotonic saline after traumatic optic neuropathy. The RGCs' survival rate in separated retinal and brain-derived neurotrophic factor (BDNF) expression were observed by Dil labeling and Enzyme-Linked Immuno Sorbent Assay (ELISA), respectively, at 3, 7, 14, and 28 days after transplantation. RESULTS: Quantitative analysis showed that RGCs were significantly attenuated at 3, 7, 14, and 28 days after transplantation in both areas of the retina (peripheral, P7d = 0.0011, P14d < 0.001, P28d < 0.001; central, P3d = 0.0437, P7d = 0.0067, P14d < 0.001, P28d < 0.001). Mean density of RGCs in the MSC transplantation group was significantly higher than that of the PBS control group after 14 days of treatment (P < 0.001). The homogenates BDNF (hBDNF) in the MSC transplantation group was obviously higher than that in the PBS control group at 14 and 28 days (P < 0.05). CONCLUSIONS: The MSCs transplanted into the retina of cats can slow down RGC apoptosis and steadily express BDNF. The MSC-mediated neuroprotection after optic nerve injury may be related to BNDF. PMID: 25723663 [PubMed - indexed for MEDLINE]
Read more...
Related Articles The therapeutic effects of bone marrow mesenchymal stem cells after optic nerve damage in the adult rat. Clin Interv Aging. 2015;10:487-90 Authors: Tan H, Kang X, Lu S, Liu L Abstract Optic nerve trauma is a common occurrence that results in irreversible blindness. Currently, no effective strategies are known to prevent optic nerve degeneration. We assessed the therapeutic effects of bone marrow mesenchymal stem cells (BMSCs) after optic nerve crush in the adult rat. Our results showed that BMSCs significantly promoted the regeneration of injured axons compared with phosphate buffered saline alone. Therefore, BMSC transplantation may be effective for the treatment of central nervous system disorders. PMID: 25733825 [PubMed - indexed for MEDLINE]
Read more...
Related Articles MASH1/Ascl1a leads to GAP43 expression and axon regeneration in the adult CNS. PLoS One. 2015;10(3):e0118918 Authors: Williams RR, Venkatesh I, Pearse DD, Udvadia AJ, Bunge MB Abstract Unlike CNS neurons in adult mammals, neurons in fish and embryonic mammals can regenerate their axons after injury. These divergent regenerative responses are in part mediated by the growth-associated expression of select transcription factors. The basic helix-loop-helix (bHLH) transcription factor, MASH1/Ascl1a, is transiently expressed during the development of many neuronal subtypes and regulates the expression of genes that mediate cell fate determination and differentiation. In the adult zebrafish (Danio rerio), Ascl1a is also transiently expressed in retinal ganglion cells (RGCs) that regenerate axons after optic nerve crush. Utilizing transgenic zebrafish with a 3.6 kb GAP43 promoter that drives expression of an enhanced green fluorescent protein (EGFP), we observed that knock-down of Ascl1a expression reduces both regenerative gap43 gene expression and axonal growth after injury compared to controls. In mammals, the development of noradrenergic brainstem neurons requires MASH1 expression. In contrast to zebrafish RGCs, however, MASH1 is not expressed in the mammalian brainstem after spinal cord injury (SCI). Therefore, we utilized adeno-associated viral (AAV) vectors to overexpress MASH1 in four month old rat (Rattus norvegicus) brainstem neurons in an attempt to promote axon regeneration after SCI. We discovered that after complete transection of the thoracic spinal cord and implantation of a Schwann cell bridge, animals that express MASH1 exhibit increased noradrenergic axon regeneration and improvement in hindlimb joint movements compared to controls. Together these data demonstrate that MASH1/Ascl1a is a fundamental regulator of axonal growth across vertebrates and can induce modifications to the intrinsic state of neurons to promote functional regeneration in response to CNS injury. PMID: 25751153 [PubMed - indexed for MEDLINE]
Read more...
Related Articles Lentiviral-mediated growth-associated protein-43 modification of bone marrow mesenchymal stem cells improves traumatic optic neuropathy in rats. Mol Med Rep. 2015 Oct;12(4):5691-700 Authors: Zhu Q, Liu Z, Wang C, Nie L, He Y, Zhang Y, Liu X, Su G Abstract The aim of the present study was to examine the effect of growth-associated protein-43 (GAP-43) on bone marrow mesenchymal stem cell (BMSC) differentiation in a rat model of traumatic optic neuropathy (TON). GAP‑43 and short hairpin (sh)RNA‑GAP‑43 were inserted into pGLV5 and pGLV3 lentiviral vectors, respectively. The stable control, GAP‑43‑overexpression and GAP‑43‑knockdown cell lines (GFP/BMSCs, GAP‑43/BMSCs and shGAP‑43/BMSCs, respectively) were established. The expression of GAP‑43, neuron‑specific enolase (NSE), nestin, neurofilament (NF), neuron‑specific nuclear‑binding protein (NeuN) and βIII‑tubulin were detected in the GAP‑43/BMSCs and shGAP‑43/BMSCs with retinal cell‑conditioned differentiation medium using semi‑quantitative polymerase chain reaction (PCR), western blotting and cell immunofluorescence. In addition, the BMSCs were observed under fluorescence microscopy. The Sprague‑Dawley rat models of TON were established and identified by retrograde labeling of retinal ganglion cells (RGCs) with fluoroGold (FG). The lentiviral‑mediated GAP‑43‑modified BMSCs were then transplanted into the rat model of TON. The expression of GAP‑43 was detected in the retinal tissues using qPCR and western blotting. The histopathology of the retinal tissues was observed using hematoxylin and eosin (H&E) staining. The GAP‑43/BMSCs exhibited positive expression of NSE, NF, nestin and βIII‑tubulin, and exhibited a neuronal phenotype. The shGAP‑43/BMSCs markedly inhibited expression of NeuN, NSE, NF, nestin and βIII‑tubulin induced by retinal cell‑conditioned differentiation medium. The FG staining revealed that the number of labeled RGCs were significantly decreased in the TON model rats, compared with normal rats (P<0.05). The H&E staining revealed that the degree of pathological changes was improved in the GAP‑43/BMSC group, compared with the GFP/BMSC and shGAP‑43/BMSC groups. In conclusion, GAP‑43 promoted BMSC differentiation into neuron-like cells, and intravitreally injected GAP-43/BMSCs promoted the process of nerve repair in a rat model of TON. PMID: 26238991 [PubMed - indexed for MEDLINE]
Read more...
Related Articles Autocrine protective mechanisms of human granulocyte colony-stimulating factor (G-CSF) on retinal ganglion cells after optic nerve crush. Exp Eye Res. 2016 Feb;143:132-40 Authors: Huang SP, Fang KT, Chang CH, Huang TL, Wen YT, Tsai RK Abstract This study investigated the role of autocrine mechanisms in the anti-apoptotic effects of human granulocyte colony-stimulating factor (G-CSF) on retinal ganglion cells (RGCs) after optic nerve (ON) crush. We observed that both G-CSF and G-CSF receptor (G-CSFR) are expressed in normal rat retina. Further dual immunofluorescence staining showed G-CSFR immunoreactive cells were colocalized with RGCs, Müller cells, horizontal and amacrine cells. These results confirm that G-CSF is an endogenous ligand in the retina. The semi-quantitative RT-PCR finding demonstrated the transcription levels of G-CSF and G-CSFR were up-regulated after ON crush injury. G-CSF treatment further increased and prolonged the expression level of G-CSFR in the retina. G-CSF has been shown to enhance transdifferentiation of the mobilized hematopoietic stem cells into tissue to repair central nervous system injury. We test the hypothesis that the hematopoietic stem cells recruited by G-CSF treatment can transdifferentiate into RGCs after ON crush by performing sublethal irradiation of the rats 5 days before ON crush. The flow cytometric analysis showed the number of CD34 positive cells in the peripheral blood is significantly lower in the irradiated, crushed and G-CSF-treated group than the sham control group or crush and G-CSF treated group. Nevertheless, the G-CSF treatment enhances the RGC survival after sublethal irradiation and ON crush injury. These data indicate that G-CSF seems unlikely to induce hematopoietic stem cell transdifferentiation into RGCs after ON crush injury. In conclusion, G-CSF may serve an endogenous protective signaling in the retina through direct activation of intrinsic G-CSF receptors and downstream signaling pathways to rescue RGCs after ON crush injury, exogenous G-CSF administration can enhance the anti-apoptotic effects on RGCs. PMID: 26518178 [PubMed - indexed for MEDLINE]
Read more...
Related Articles New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):E1738-46 Authors: Bennett ML, Bennett FC, Liddelow SA, Ajami B, Zamanian JL, Fernhoff NB, Mulinyawe SB, Bohlen CJ, Adil A, Tucker A, Weissman IL, Chang EF, Li G, Grant GA, Hayden Gephart MG, Barres BA Abstract The specific function of microglia, the tissue resident macrophages of the brain and spinal cord, has been difficult to ascertain because of a lack of tools to distinguish microglia from other immune cells, thereby limiting specific immunostaining, purification, and manipulation. Because of their unique developmental origins and predicted functions, the distinction of microglia from other myeloid cells is critically important for understanding brain development and disease; better tools would greatly facilitate studies of microglia function in the developing, adult, and injured CNS. Here, we identify transmembrane protein 119 (Tmem119), a cell-surface protein of unknown function, as a highly expressed microglia-specific marker in both mouse and human. We developed monoclonal antibodies to its intracellular and extracellular domains that enable the immunostaining of microglia in histological sections in healthy and diseased brains, as well as isolation of pure nonactivated microglia by FACS. Using our antibodies, we provide, to our knowledge, the first RNAseq profiles of highly pure mouse microglia during development and after an immune challenge. We used these to demonstrate that mouse microglia mature by the second postnatal week and to predict novel microglial functions. Together, we anticipate these resources will be valuable for the future study and understanding of microglia in health and disease. PMID: 26884166 [PubMed - indexed for MEDLINE]
Read more...
Related Articles Human umbilical cord blood mononuclear cells and chorionic plate-derived mesenchymal stem cells promote axon survival in a rat model of optic nerve crush injury. Int J Mol Med. 2016 May;37(5):1170-80 Authors: Chung S, Rho S, Kim G, Kim SR, Baek KH, Kang M, Lew H Abstract The use of mesenchymal stem cells (MSCs) in cell therapy in regenerative medicine has great potential, particularly in the treatment of nerve injury. Umbilical cord blood (UCB) reportedly contains stem cells, which have been widely used as a hematopoietic source and may have therapeutic potential for neurological impairment. Although ongoing research is dedicated to the management of traumatic optic nerve injury using various measures, novel therapeutic strategies based on the complex underlying mechanisms responsible for optic nerve injury, such as inflammation and/or ischemia, are required. In the present study, a rat model of optic nerve crush (ONC) injury was established in order to examine the effects of transplanting human chorionic plate-derived MSCs (CP‑MSCs) isolated from the placenta, as well as human UCB mononuclear cells (CB-MNCs) on compressed rat optic nerves. Expression markers for inflammation, apoptosis, and optic nerve regeneration were analyzed, as well as the axon survival rate by direct counting. Increased axon survival rates were observed following the injection of CB‑MNCs at at 1 week post-transplantation compared with the controls. The levels of growth-associated protein-43 (GAP‑43) were increased after the injection of CB‑MNCs or CP‑MSCs compared with the controls, and the expression levels of hypoxia-inducible factor-1α (HIF-1α) were also significantly increased following the injection of CB-MNCs or CP-MSCs. ERM-like protein (ERMN) and SLIT-ROBO Rho GTPase activating protein 2 (SRGAP2) were found to be expressed in the optic nerves of the CP‑MSC-injected rats with ONC injury. The findings of our study suggest that the administration of CB‑MNCs or CP‑MSCs may promote axon survival through systemic concomitant mechanisms involving GAP‑43 and HIF‑1α. Taken together, these findings provide further understanding of the mechanisms repsonsible for optic nerve injury and may aid in the development of novel cell-based therapeutic strategies with future applications in regenerative medicine, particularly in the management of optic nerve disorders. PMID: 26986762 [PubMed - indexed for MEDLINE]
Read more...
Related Articles Chemoimmunotherapy with methotrexate, cytarabine, thiotepa, and rituximab (MATRix regimen) in patients with primary CNS lymphoma: results of the first randomisation of the International Extranodal Lymphoma Study Group-32 (IELSG32) phase 2 trial. Lancet Haematol. 2016 May;3(5):e217-27 Authors: Ferreri AJ, Cwynarski K, Pulczynski E, Ponzoni M, Deckert M, Politi LS, Torri V, Fox CP, Rosée PL, Schorb E, Ambrosetti A, Roth A, Hemmaway C, Ferrari A, Linton KM, Rudà R, Binder M, Pukrop T, Balzarotti M, Fabbri A, Johnson P, Gørløv JS, Hess G, Panse J, Pisani F, Tucci A, Stilgenbauer S, Hertenstein B, Keller U, Krause SW, Levis A, Schmoll HJ, Cavalli F, Finke J, Reni M, Zucca E, Illerhaus G, International Extranodal Lymphoma Study Group (IELSG) Abstract BACKGROUND: Standard treatment for patients with primary CNS lymphoma remains to be defined. Active therapies are often associated with increased risk of haematological or neurological toxicity. In this trial, we addressed the tolerability and efficacy of adding rituximab with or without thiotepa to methotrexate-cytarabine combination therapy (the MATRix regimen), followed by a second randomisation comparing consolidation with whole-brain radiotherapy or autologous stem cell transplantation in patients with primary CNS lymphoma. We report the results of the first randomisation in this Article. METHODS: For the international randomised phase 2 International Extranodal Lymphoma Study Group-32 (IELSG32) trial, HIV-negative patients (aged 18-70 years) with newly diagnosed primary CNS lymphoma and measurable disease were enrolled from 53 cancer centres in five European countries (Denmark, Germany, Italy, Switzerland, and the UK) and randomly assigned (1:1:1) to receive four courses of methotrexate 3·5 g/m(2) on day 1 plus cytarabine 2 g/m(2) twice daily on days 2 and 3 (group A); or the same combination plus two doses of rituximab 375 mg/m(2) on days -5 and 0 (group B); or the same methotrexate-cytarabine-rituximab combination plus thiotepa 30 mg/m(2) on day 4 (group C), with the three groups repeating treatment every 3 weeks. Patients with responsive or stable disease after the first stage were then randomly allocated between whole-brain radiotherapy and autologous stem cell transplantation. A permuted blocks randomised design (block size four) was used for both randomisations, and a computer-generated randomisation list was used within each stratum to preserve allocation concealment. Randomisation was stratified by IELSG risk score (low vs intermediate vs high). No masking after assignment to intervention was used. The primary endpoint of the first randomisation was the complete remission rate, analysed by modified intention to treat. This study is registered with ClinicalTrials.gov, number NCT01011920. FINDINGS: Between Feb 19, 2010, and Aug 27, 2014, 227 eligible patients were recruited. 219 of these 227 enrolled patients were assessable. At median follow-up of 30 months (IQR 22-38), patients treated with rituximab and thiotepa had a complete remission rate of 49% (95% CI 38-60), compared with 23% (14-31) of those treated with methotrexate-cytarabine alone (hazard ratio 0·46, 95% CI 0·28-0·74) and 30% (21-42) of those treated with methotrexate-cytarabine plus rituximab (0·61, 0·40-0·94). Grade 4 haematological toxicity was more frequent in patients treated with methotrexate-cytarabine plus rituximab and thiotepa, but infective complications were similar in the three groups. The most common grade 3-4 adverse events in all three groups were neutropenia, thrombocytopenia, anaemia, and febrile neutropenia or infections. 13 (6%) patients died of toxicity. INTERPRETATION: With the limitations of a randomised phase 2 study design, the IELSG32 trial provides a high level of evidence supporting the use of MATRix combination as the new standard chemoimmunotherapy for patients aged up to 70 years with newly diagnosed primary CNS lymphoma and as the control group for future randomised trials. FUNDING: Associazione Italiana del Farmaco, Cancer Research UK, Oncosuisse, and Swiss National Foundation. PMID: 27132696 [PubMed - indexed for MEDLINE]
Read more...
Related Articles Therapeutic effect of adipose‑derived stem cell transplantation on optic nerve injury in rats. Mol Med Rep. 2018 Feb;17(2):2529-2534 Authors: Li X, Zhao S, Wang L Abstract Adipose-derived stem cells (ADSCs) are mesenchymal stem cells in adipose tissue. ADSCs may differentiate into cells and tissues of different embryonic germ layers under specific inducing conditions. Previous studies have demonstrated that Schwann cells transformed from ADSCs can express nerve growth factors, generate nerve fibers and promote axonal regeneration in models of peripheral nerve injury. Stem cell transplantation is one of the potential techniques for the treatment of retinal ganglion cell injury. The present study developed an optic nerve crush injury rat model to investigate the therapeutic effect of fat stem cell transplantation on optic nerve injured rats. Retinal morphological changes were observed on day 3, 7, 14, 21 and 28 following optic nerve injury. It was determined that the number of retinal ganglion cells (RGCs) decreased with time following optic nerve injury; however, the number of RGCs in the stem cell transplantation group was higher compared with the buffer control group. The results of reverse transcription-quantitative polymerase chain reaction also demonstrated that the growth associated protein 43 mRNA expression level of the stem cell transplantation group was higher compared with the buffer control group. Apoptosis tests demonstrated that the stem cell transplantation group was able to resist the apoptosis of retinal cells. The present study demonstrated that in vivo transplantation of ADSCs can improve the survival rate of RGCs in rats with optic nerve injury and to resist the apoptosis of retinal cells. PMID: 29207059 [PubMed - indexed for MEDLINE]
Read more...
Related Articles Wnt signaling regulates proliferation and differentiation of radial glia in regenerative processes after stab injury in the optic tectum of adult zebrafish. Glia. 2018 07;66(7):1382-1394 Authors: Shimizu Y, Ueda Y, Ohshima T Abstract Zebrafish have superior abilities to generate new neurons in the adult brain and to regenerate brain tissue after brain injury compared with mammals. There exist two types of neural stem cells (NSCs): neuroepithelial-like stem cells (NE) and radial glia (RG) in the optic tectum. We established an optic tectum stab injury model to analyze the function of NSCs in the regenerative condition and confirmed that the injury induced the proliferation of RG, but not NE and that the proliferated RG differentiated into new neurons after the injury. We then analyzed the involvement of Wnt signaling after the injury, using a Wnt reporter line in which canonical Wnt signaling activation induced GFP expression and confirmed that GFP expression was induced specifically in RG after the injury. We also analyzed the expression level of genes related to Wnt signaling, and confirmed that endogenous Wnt antagonist dkk1b expression was significantly decreased after the injury. We observed that Wnt signal inhibitor IWR1 treatment suppressed the proliferation and differentiation of RG after the injury, suggesting that up-regulation of Wnt signaling in RG after the stab injury was required for optic tectum regeneration. We also confirmed that Wnt activation by treatment with GSK3β inhibitor BIO in uninjured zebrafish induced proliferation of RG in the optic tectum. This optic tectum stab injury model is useful for the study of the molecular mechanisms of brain regeneration and analysis of the RG functions in physiological and regenerative conditions. PMID: 29411422 [PubMed - indexed for MEDLINE]
Read more...
Related Articles Human Periodontal Ligament-Derived Stem Cells Promote Retinal Ganglion Cell Survival and Axon Regeneration After Optic Nerve Injury. Stem Cells. 2018 Jun;36(6):844-855 Authors: Cen LP, Ng TK, Liang JJ, Zhuang X, Yao X, Yam GH, Chen H, Cheung HS, Zhang M, Pang CP Abstract Optic neuropathies are the leading cause of irreversible blindness and visual impairment in the developed countries, affecting more than 80 million people worldwide. While most optic neuropathies have no effective treatment, there is intensive research on retinal ganglion cell (RGC) protection and axon regeneration. We previously demonstrated potential of human periodontal ligament-derived stem cells (PDLSCs) for retinal cell replacement. Here, we report the neuroprotective effect of human PDLSCs to ameliorate RGC degeneration and promote axonal regeneration after optic nerve crush (ONC) injury. Human PDLSCs were intravitreally injected into the vitreous chamber of adult Fischer rats after ONC in vivo as well as cocultured with retinal explants in vitro. Human PDLSCs survived in the vitreous chamber and were maintained on the RGC layer even at 3 weeks after ONC. Immunofluorescence analysis of βIII-tubulin and Gap43 showed that the numbers of surviving RGCs and regenerating axons were significantly increased in the rats with human PDLSC transplantation. In vitro coculture experiments confirmed that PDLSCs enhanced RGC survival and neurite regeneration in retinal explants without inducing inflammatory responses. Direct cell-cell interaction and elevated brain-derived neurotrophic factor secretion, but not promoting endogenous progenitor cell regeneration, were the RGC protective mechanisms of human PDLSCs. In summary, our results revealed the neuroprotective role of human PDLSCs by strongly promoting RGC survival and axonal regeneration both in vivo and in vitro, indicating a therapeutic potential for RGC protection against optic neuropathies. Stem Cells 2018;36:844-855. PMID: 29476565 [PubMed - in process]
Read more...

Quick Contact Form