Muscular Dystrophy Stem Cell Treatment

Muscular Dystrophy and Stem Cell Therapy

What is Muscular Dystrophy?

Muscular Dystrophy and Stem Cell Therapy

Muscular Dystrophy and Stem Cell Therapy


Muscular Dystrophy (MD) refers to a group of hereditary muscle diseases that weakens the muscles that move the human body.
Muscular dystrophies are characterized by progressive skeletal muscle weakness, defects in muscle proteins, and the death of muscle cells and tissue.

Nine diseases including Duchenne, Becker, limb girdle, congenital, facioscapulohumeral, myotonic, oculopharyngeal, distal, and Emery-Dreifuss are always classified as muscular dystrophy but there are more than 100 diseases in total with similarities to muscular dystrophy.

Most types of MD are multi-system disorders with manifestations in body systems including the heart, gastrointestinal and nervous systems, endocrine glands, skin, eyes and even brain.

The condition may also lead to mood swings and learning difficulties.

 

Effective myotube formation in human adipose tissue-derived stem cells expressing dystrophin and myosin heavy chain by cellular fusion with mouse C2C12 myoblasts.

Biochem Biophys Res Commun. 2011 Apr 5;

Authors: Eom YW, Lee JE, Yang MS, Jang IK, Kim HE, Lee DH, Kim YJ, Park WJ, Kong JH, Shim KY, Lee JI, Kim HS

Stem cell therapy for muscular dystrophies requires stem cells that are able to participate in the formation of new muscle fibers. However, the differentiation steps that are the most critical for this process are not clear.

We investigated the myogenic phases of human adipose tissue-derived stem cells (hASCs) step by step and the capability of myotube formation according to the differentiation phase by cellular fusion with mouse myoblast C2C12 cells.

In hASCs treated with 5-azacytidine and fibroblast growth factor-2 (FGF-2) for 1day, the early differentiation step to express MyoD and myogenin was induced by FGF-2 treatment for 6days. Dystrophin and myosin heavy chain (MyHC) expression was induced by hASC conditioned medium in the late differentiation step.

Myotubes were observed only in hASCs undergoing the late differentiation step by cellular fusion with C2C12 cells. In contrast, hASCs that were normal or in the early stage were not involved in myotube formation.

Our results indicate that stem cells expressing dystrophin and MyHC are more suitable for myotube formation by co-culture with myoblasts than normal or early differentiated stem cells expressing MyoD and myogenin.

PMID: 21473854 [PubMed - as supplied by publisher]

Related Articles Making muscle: skeletal myogenesis in vivo and in vitro. Development. 2017 Jun 15;144(12):2104-2122 Authors: Chal J, Pourquié O Abstract Skeletal muscle is the largest tissue in the body and loss of its function or its regenerative properties results in debilitating musculoskeletal disorders. Understanding the mechanisms that drive skeletal muscle formation will not only help to unravel the molecular basis of skeletal muscle diseases, but also provide a roadmap for recapitulating skeletal myogenesis in vitro from pluripotent stem cells (PSCs). PSCs have become an important tool for probing developmental questions, while differentiated cell types allow the development of novel therapeutic strategies. In this Review, we provide a comprehensive overview of skeletal myogenesis from the earliest premyogenic progenitor stage to terminally differentiated myofibers, and discuss how this knowledge has been applied to differentiate PSCs into muscle fibers and their progenitors in vitro. PMID: 28634270 [PubMed - indexed for MEDLINE]
Read more...

Quick Contact Form