Muscular Dystrophy Stem Cell Treatment

Muscular Dystrophy and Stem Cell Therapy

What is Muscular Dystrophy?

Muscular Dystrophy and Stem Cell Therapy

Muscular Dystrophy and Stem Cell Therapy

Muscular Dystrophy (MD) refers to a group of hereditary muscle diseases that weakens the muscles that move the human body.
Muscular dystrophies are characterized by progressive skeletal muscle weakness, defects in muscle proteins, and the death of muscle cells and tissue.

Nine diseases including Duchenne, Becker, limb girdle, congenital, facioscapulohumeral, myotonic, oculopharyngeal, distal, and Emery-Dreifuss are always classified as muscular dystrophy but there are more than 100 diseases in total with similarities to muscular dystrophy.

Most types of MD are multi-system disorders with manifestations in body systems including the heart, gastrointestinal and nervous systems, endocrine glands, skin, eyes and even brain.

The condition may also lead to mood swings and learning difficulties.


Effective myotube formation in human adipose tissue-derived stem cells expressing dystrophin and myosin heavy chain by cellular fusion with mouse C2C12 myoblasts.

Biochem Biophys Res Commun. 2011 Apr 5;

Authors: Eom YW, Lee JE, Yang MS, Jang IK, Kim HE, Lee DH, Kim YJ, Park WJ, Kong JH, Shim KY, Lee JI, Kim HS

Stem cell therapy for muscular dystrophies requires stem cells that are able to participate in the formation of new muscle fibers. However, the differentiation steps that are the most critical for this process are not clear.

We investigated the myogenic phases of human adipose tissue-derived stem cells (hASCs) step by step and the capability of myotube formation according to the differentiation phase by cellular fusion with mouse myoblast C2C12 cells.

In hASCs treated with 5-azacytidine and fibroblast growth factor-2 (FGF-2) for 1day, the early differentiation step to express MyoD and myogenin was induced by FGF-2 treatment for 6days. Dystrophin and myosin heavy chain (MyHC) expression was induced by hASC conditioned medium in the late differentiation step.

Myotubes were observed only in hASCs undergoing the late differentiation step by cellular fusion with C2C12 cells. In contrast, hASCs that were normal or in the early stage were not involved in myotube formation.

Our results indicate that stem cells expressing dystrophin and MyHC are more suitable for myotube formation by co-culture with myoblasts than normal or early differentiated stem cells expressing MyoD and myogenin.

PMID: 21473854 [PubMed - as supplied by publisher]

Related Articles Potential Therapies Using Myogenic Stem Cells Combined with Bio-Engineering Approaches for Treatment of Muscular Dystrophies. Cells. 2019 Sep 11;8(9): Authors: Motohashi N, Shimizu-Motohashi Y, Roberts TC, Aoki Y Abstract Muscular dystrophies (MDs) are a group of heterogeneous genetic disorders caused by mutations in the genes encoding the structural components of myofibres. The current state-of-the-art treatment is oligonucleotide-based gene therapy that restores disease-related protein. However, this therapeutic approach has limited efficacy and is unlikely to be curative. While the number of studies focused on cell transplantation therapy has increased in the recent years, this approach remains challenging due to multiple issues related to the efficacy of engrafted cells, source of myogenic cells, and systemic injections. Technical innovation has contributed to overcoming cell source challenges, and in recent studies, a combination of muscle resident stem cells and gene editing has shown promise as a novel approach. Furthermore, improvement of the muscular environment both in cultured donor cells and in recipient MD muscles may potentially facilitate cell engraftment. Artificial skeletal muscle generated by myogenic cells and muscle resident cells is an alternate approach that may enable the replacement of damaged tissues. Here, we review the current status of myogenic stem cell transplantation therapy, describe recent advances, and discuss the remaining obstacles that exist in the search for a cure for MD patients. PMID: 31514443 [PubMed - in process]

Quick Contact Form